12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Two Modes of Transcriptional Activation at Native Promoters by NF-κB p65

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The NF-κB family of transcription factors is crucial for the expression of multiple genes involved in cell survival, proliferation, differentiation, and inflammation. The molecular basis by which NF-κB activates endogenous promoters is largely unknown, but it seems likely that it should include the means to tailor transcriptional output to match the wide functional range of its target genes. To dissect NF-κB–driven transcription at native promoters, we disrupted the interaction between NF-κB p65 and the Mediator complex. We found that expression of many endogenous NF-κB target genes depends on direct contact between p65 and Mediator, and that this occurs through the Trap-80 subunit and the TA1 and TA2 regions of p65. Unexpectedly, however, a subset of p65-dependent genes are transcribed normally even when the interaction of p65 with Mediator is abolished. Moreover, a mutant form of p65 lacking all transcription activation domains previously identified in vitro can still activate such promoters in vivo. We found that without p65, native NF-κB target promoters cannot be bound by secondary transcription factors. Artificial recruitment of a secondary transcription factor was able to restore transcription of an otherwise NF-κB–dependent target gene in the absence of p65, showing that the control of promoter occupancy constitutes a second, independent mode of transcriptional activation by p65. This mode enables a subset of promoters to utilize a wide choice of transcription factors, with the potential to regulate their expression accordingly, whilst remaining dependent for their activation on NF-κB.

          Author Summary

          Transcriptional activation by the NF-κB family of transcription factors is crucial for the expression of multiple genes involved in cell survival, proliferation, differentiation, and inflammation. The activation domain of the p65 subunit of NF-κB has been extensively studied in vitro and on artificial reporter plasmids, but the molecular basis by which it drives expression of natural target genes in vivo is still not well understood. Moreover, it is unclear how any single activation mechanism could allow different target genes to fine tune their timing and expression according to their biological requirements. To address this, we experimentally blocked the interaction of p65 with the Mediator complex—a key factor for transcription by most, if not all, activators. While this prevented expression of many NF-κB–dependent genes, others were unaffected, revealing that p65 is able to drive their expression by an independent mode, which does not depend on direct contact with Mediator. Further experiments indicated that p65 accomplishes this by controlling the recruitment of other, secondary transcription factors to its target promoters. This may enable NF-κB to retain overall control over activation of its target genes, but at the same time allow secondary transcription factors to specify appropriate expression levels according to the cell-type and stimulus.

          Abstract

          The p65 subunit of NF-κB drives expression of target genes not only as a classical activator, via direct interactions with the basic transcriptional machinery, but also independently by controlling the recruitment of secondary transcription factors to target promoters.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Dissecting the regulatory circuitry of a eukaryotic genome.

          Genome-wide expression analysis was used to identify genes whose expression depends on the functions of key components of the transcription initiation machinery in yeast. Components of the RNA polymerase II holoenzyme, the general transcription factor TFIID, and the SAGA chromatin modification complex were found to have roles in expression of distinct sets of genes. The results reveal an unanticipated level of regulation which is superimposed on that due to gene-specific transcription factors, a novel mechanism for coordinate regulation of specific sets of genes when cells encounter limiting nutrients, and evidence that the ultimate targets of signal transduction pathways can be identified within the initiation apparatus.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation.

            Networks of protein interactions coordinate cellular functions. We describe a bimolecular fluorescence complementation (BiFC) assay for determination of the locations of protein interactions in living cells. This approach is based on complementation between two nonfluorescent fragments of the yellow fluorescent protein (YFP) when they are brought together by interactions between proteins fused to each fragment. BiFC analysis was used to investigate interactions among bZIP and Rel family transcription factors. Regions outside the bZIP domains determined the locations of bZIP protein interactions. The subcellular sites of protein interactions were regulated by signaling. Cross-family interactions between bZIP and Rel proteins affected their subcellular localization and modulated transcription activation. These results attest to the general applicability of the BiFC assay for studies of protein interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A high-resolution map of active promoters in the human genome.

              In eukaryotic cells, transcription of every protein-coding gene begins with the assembly of an RNA polymerase II preinitiation complex (PIC) on the promoter. The promoters, in conjunction with enhancers, silencers and insulators, define the combinatorial codes that specify gene expression patterns. Our ability to analyse the control logic encoded in the human genome is currently limited by a lack of accurate information regarding the promoters for most genes. Here we describe a genome-wide map of active promoters in human fibroblast cells, determined by experimentally locating the sites of PIC binding throughout the human genome. This map defines 10,567 active promoters corresponding to 6,763 known genes and at least 1,196 un-annotated transcriptional units. Features of the map suggest extensive use of multiple promoters by the human genes and widespread clustering of active promoters in the genome. In addition, examination of the genome-wide expression profile reveals four general classes of promoters that define the transcriptome of the cell. These results provide a global view of the functional relationships among transcriptional machinery, chromatin structure and gene expression in human cells.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                PLoS Biol
                pbio
                plbi
                plosbiol
                PLoS Biology
                Public Library of Science (San Francisco, USA )
                1544-9173
                1545-7885
                March 2009
                31 March 2009
                : 7
                : 3
                : e1000073
                Affiliations
                [1 ] Max Planck Institute for Immunobiology, Freiburg, Germany
                [2 ] Department of Experimental Oncology, European Institute of Oncology (IEO), IFOM-IEO Campus, Milan, Italy
                National Cancer Institute, United States of America
                Author notes
                * To whom correspondence should be addressed. E-mail: saccani@ 123456immunbio.mpg.de
                Article
                08-PLBI-RA-4853R2 plbi-07-03-22
                10.1371/journal.pbio.1000073
                2661965
                19338389
                69157724-78e0-4560-9194-07d124cd2d96
                Copyright: © 2009 van Essen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 November 2008
                : 17 February 2009
                Page count
                Pages: 14
                Categories
                Research Article
                Molecular Biology
                Custom metadata
                van Essen D, Engist B, Natoli G, Saccani S (2009) Two modes of transcriptional activation at native promoters by NF-κB p65. PLoS Biol 7(3): e1000073. doi: 10.1371/journal.pbio.1000073

                Life sciences
                Life sciences

                Comments

                Comment on this article