43
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Injectable hydrogels for cartilage and bone tissue engineering

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tissue engineering has become a promising strategy for repairing damaged cartilage and bone tissue. Among the scaffolds for tissue-engineering applications, injectable hydrogels have demonstrated great potential for use as three-dimensional cell culture scaffolds in cartilage and bone tissue engineering, owing to their high water content, similarity to the natural extracellular matrix (ECM), porous framework for cell transplantation and proliferation, minimal invasive properties, and ability to match irregular defects. In this review, we describe the selection of appropriate biomaterials and fabrication methods to prepare novel injectable hydrogels for cartilage and bone tissue engineering. In addition, the biology of cartilage and the bony ECM is also summarized. Finally, future perspectives for injectable hydrogels in cartilage and bone tissue engineering are discussed.

          Related collections

          Most cited references 270

          • Record: found
          • Abstract: found
          • Article: not found

          Hydrogels in regenerative medicine.

          Hydrogels, due to their unique biocompatibility, flexible methods of synthesis, range of constituents, and desirable physical characteristics, have been the material of choice for many applications in regenerative medicine. They can serve as scaffolds that provide structural integrity to tissue constructs, control drug and protein delivery to tissues and cultures, and serve as adhesives or barriers between tissue and material surfaces. In this work, the properties of hydrogels that are important for tissue engineering applications and the inherent material design constraints and challenges are discussed. Recent research involving several different hydrogels polymerized from a variety of synthetic and natural monomers using typical and novel synthetic methods are highlighted. Finally, special attention is given to the microfabrication techniques that are currently resulting in important advances in the field.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone substitutes: an update.

            Autograft is considered ideal for grafting procedures, providing osteoinductive growth factors, osteogenic cells, and an osteoconductive scaffold. Limitations, however, exist regarding donor site morbidity and graft availability. Allograft on the other hand, posses the risk of disease transmission. Synthetic graft substitutes lack osteoinductive or osteogenic properties. Composite grafts combine scaffolding properties with biological elements to stimulate cell proliferation and differentiation and eventually osteogenesis. We present here an overview of bone grafts and graft substitutes available for clinical applications.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Designing cell-compatible hydrogels for biomedical applications.

               Dror Seliktar (2012)
              Hydrogels are polymeric materials distinguished by high water content and diverse physical properties. They can be engineered to resemble the extracellular environment of the body's tissues in ways that enable their use in medical implants, biosensors, and drug-delivery devices. Cell-compatible hydrogels are designed by using a strategy of coordinated control over physical properties and bioactivity to influence specific interactions with cellular systems, including spatial and temporal patterns of biochemical and biomechanical cues known to modulate cell behavior. Important new discoveries in stem cell research, cancer biology, and cellular morphogenesis have been realized with model hydrogel systems premised on these designs. Basic and clinical applications for hydrogels in cell therapy, tissue engineering, and biomedical research continue to drive design improvements using performance-based materials engineering paradigms.
                Bookmark

                Author and article information

                Journal
                Bone Res
                Bone Res
                Bone Research
                Nature Publishing Group
                2095-4700
                2095-6231
                30 May 2017
                2017
                : 5
                : 17014
                Affiliations
                [1 ]State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing, PR China
                [2 ]Nanjing Maternity and Child Health Care Hospital , Nanjing, PR China
                [3 ]School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic , Shenzhen, PR China
                [4 ]School of Chemistry and Chemical Engineering, Southeast University , Nanjing, PR China
                [5 ]Hunan Key Laboratory of Green Chemistry and Application of Biological Nanotechnology, Hunan University of Technology , Zhuzhou, PR China
                Author notes
                [✝]

                These authors contributed equally to this work.

                Article
                boneres201714
                10.1038/boneres.2017.14
                5448314
                Copyright © 2017 The Author(s)

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Review Article

                Comments

                Comment on this article