2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spatio-temporal patterning of different connexins in developing and postnatal human kidneys and in nephrotic syndrome of the Finnish type (CNF)

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Connexins (Cxs) are membrane-spanning proteins which enable flow of information important for kidney homeostasis. Changes in their spatiotemporal patterning characterize blood vessel abnormalities and chronic kidney diseases (CKD). We analysed spatiotemporal expression of Cx37, Cx40, Cx43 and Cx45 in nephron and glomerular cells of developing, postnatal kidneys, and nephrotic syndrome of the Finnish type (CNF) by using immunohistochemistry, statistical methods and electron microscopy. During kidney development, strong Cx45 expression in proximal tubules and decreasing expression in glomeruli was observed. In developing distal nephron, Cx37 and Cx40 showed moderate-to-strong expression, while weak Cx43 expression gradually increased. Cx45/Cx40 co-localized in mesangial and granular cells. Cx43 /Cx45 co-localized in podocytes, mesangial and parietal epithelial cells, and with podocyte markers (synaptopodin, nephrin). Different Cxs co-expressed with endothelial (CD31) and VSMC (α –SMA) markers in vascular walls. Peak signalling of Cx37, Cx43 and Cx40 accompanied kidney nephrogenesis, while strongest Cx45 signalling paralleled nephron maturation. Spatiotemporal Cxs patterning indicate participation of Cx45 in differentiation of proximal tubules, and Cx43, Cx37 and Cx40 in distal tubules differentiation. CNF characterized disorganized Cx45 expression in proximal tubules, increased Cx43 expression in distal tubules and overall elevation of Cx40 and Cx37, while Cx40 co-localized with increased number of interstitial myofibroblasts.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          Dysfunction of fibroblasts of extrarenal origin underlies renal fibrosis and renal anemia in mice.

          In chronic kidney disease, fibroblast dysfunction causes renal fibrosis and renal anemia. Renal fibrosis is mediated by the accumulation of myofibroblasts, whereas renal anemia is mediated by the reduced production of fibroblast-derived erythropoietin, a hormone that stimulates erythropoiesis. Despite their importance in chronic kidney disease, the origin and regulatory mechanism of fibroblasts remain unclear. Here, we have demonstrated that the majority of erythropoietin-producing fibroblasts in the healthy kidney originate from myelin protein zero-Cre (P0-Cre) lineage-labeled extrarenal cells, which enter the embryonic kidney at E13.5. In the diseased kidney, P0-Cre lineage-labeled fibroblasts, but not fibroblasts derived from injured tubular epithelial cells through epithelial-mesenchymal transition, transdifferentiated into myofibroblasts and predominantly contributed to fibrosis, with concomitant loss of erythropoietin production. We further demonstrated that attenuated erythropoietin production in transdifferentiated myofibroblasts was restored by the administration of neuroprotective agents, such as dexamethasone and neurotrophins. Moreover, the in vivo administration of tamoxifen, a selective estrogen receptor modulator, restored attenuated erythropoietin production as well as fibrosis in a mouse model of kidney fibrosis. These findings reveal the pathophysiological roles of P0-Cre lineage-labeled fibroblasts in the kidney and clarify the link between renal fibrosis and renal anemia.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human intrauterine renal growth expressed in absolute number of glomeruli assessed by the disector method and Cavalieri principle.

            The disector method, a stereologic procedure unbiased by feature size, shape, or tissue-processing methods, for the estimation of total glomerular number was performed on pairs of human kidneys from 11 normal spontaneous second trimester abortions and stillbirths (15 to 40 weeks gestation). In addition, gestational age-dependent patterns of change in the average volume of the nephron and its cortical and medullary segments were analyzed. Mean glomerular number, plateauing at 36 weeks, increased from 15,000 at 15 weeks to 740,000 at 40 weeks. Average volume of the medullary nephron segment (Henle's loop) increased throughout pregnancy. Average volume of the cortical nephron segment (Tubuli Contorti) decreased from 15 weeks to 25 weeks, then increased after 36 weeks. Fractional volume of the renal cortex decreased from 15 weeks to 40 weeks. Three to 4 hours of microscopic analysis time were required per kidney on routinely processed 5-microns hematoxylin and eosin-stained paraffin sections. Average coefficient of error for number estimation was 8.02%. Average intra- and interobserver reproducibilities were 96.8 and 93.7%, respectively. The demonstrated temporal differences in the development of the cortical and medullary nephron components may result in a dissociation of function, which may explain the increased incidence of fetal hydrops in the second trimester of pregnancy, and which must be taken into account in the treatment of (very) premature infants. Although the number of kidneys included in this study is limited, as they reflect the whole period of antenatal development relevant to neonatal intensive care, the disector method of glomerular number estimation shows significant potential for the analysis and increased understanding of the development of renal function. The method appears to be more sensitive in detecting small and early deviations from normal renal growth and development than previously available parameters e.g., renal weight and (cortical) volume.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Role of connexin 43 in different forms of intercellular communication - gap junctions, extracellular vesicles and tunnelling nanotubes.

              Communication is important to ensure the correct and efficient flow of information, which is required to sustain active social networks. A fine-tuned communication between cells is vital to maintain the homeostasis and function of multicellular or unicellular organisms in a community environment. Although there are different levels of complexity, intercellular communication, in prokaryotes to mammalians, can occur through secreted molecules (either soluble or encapsulated in vesicles), tubular structures connecting close cells or intercellular channels that link the cytoplasm of adjacent cells. In mammals, these different types of communication serve different purposes, may involve distinct factors and are mediated by extracellular vesicles, tunnelling nanotubes or gap junctions. Recent studies have shown that connexin 43 (Cx43, also known as GJA1), a transmembrane protein initially described as a gap junction protein, participates in all these forms of communication; this emphasizes the concept of adopting strategies to maximize the potential of available resources by reutilizing the same factor in different scenarios. In this Review, we provide an overview of the most recent advances regarding the role of Cx43 in intercellular communication mediated by extracellular vesicles, tunnelling nanotubes and gap junctions.
                Bookmark

                Author and article information

                Contributors
                msb@mefst.hr
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                29 May 2020
                29 May 2020
                2020
                : 10
                : 8756
                Affiliations
                [1 ]ISNI 0000 0004 0644 1675, GRID grid.38603.3e, Department of Anatomy, Histology and Embryology, School of Medicine, , University of Split, ; Split, Croatia
                [2 ]ISNI 0000 0001 0741 1142, GRID grid.413034.1, Department of Histology and Embryology, School of Medicine, , University of Mostar, ; Mostar, Bosnia and Herzegovina
                [3 ]Department of Paediatrics, University Hospital in Split, School of Medicine, University of Split, Split, Croatia
                [4 ]Department of Pathology, University Hospital in Split, School of Medicine, University of Split, Split, Croatia
                [5 ]ISNI 0000 0004 0644 1675, GRID grid.38603.3e, Department of Biology, Faculty of Science, , University of Split, ; Split, Croatia
                Author information
                http://orcid.org/0000-0002-9776-2532
                Article
                65777
                10.1038/s41598-020-65777-5
                7260365
                32471989
                6922ed6d-de4f-4d49-9cfb-55b9e430ffee
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 19 February 2020
                : 6 May 2020
                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized
                developmental biology,biomarkers,nephrology
                Uncategorized
                developmental biology, biomarkers, nephrology

                Comments

                Comment on this article