15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Targeting CD46 Enhances Anti-Tumoral Activity of Adenovirus Type 5 for Bladder Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          CD46 is generally overexpressed in many human cancers, representing a prime target for CD46-binding adenoviruses (Ads). This could help to overcome low anti-tumoral activity by coxsackie-adenoviral receptor (CAR)-targeting cancer gene therapy viruses. However, because of scarce side-by-side information about CAR and CD46 expression levels in cancer cells, mixed observations of cancer therapeutic efficacy have been observed. This study evaluated Ad-mediated therapeutic efficacy using either CAR-targeting Ad5 or CD46-targeting Ad5/35 fiber chimera in bladder cancer cell lines. Compared with normal urothelia, bladder cancer tissue generally overexpressed both CAR and CD46. While CAR expression was not correlated with disease progression, CD46 expression was inversely correlated with tumor grade, stage, and risk grade. In bladder cancer cell lines, expression levels of CD46 and CAR were highly correlated with Ad5/35- and Ad5-mediated gene transduction and cytotoxicity, respectively. In a human EJ bladder cancer xenograft mouse model, with either overexpressed or suppressed CD46 expression levels, Ad5/35-tk followed by ganciclovir (GCV) treatment significantly affected tumor growth, whereas Ad5-tk/GCV had only minimal effects. Overall, our findings suggest that bladder cancer cells overexpress both CAR and CD46, and that adenoviral cancer gene therapy targeting CD46 represents a more suitable therapy option than a CAR-targeting therapy, especially in patients with low risk bladder cancers.

          Related collections

          Most cited references57

          • Record: found
          • Abstract: found
          • Article: not found

          Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.

          A complementary DNA clone has been isolated that encodes a coxsackievirus and adenovirus receptor (CAR). When transfected with CAR complementary DNA, nonpermissive hamster cells became susceptible to coxsackie B virus attachment and infection. Furthermore, consistent with previous studies demonstrating that adenovirus infection depends on attachment of a viral fiber to the target cell, CAR-transfected hamster cells bound adenovirus in a fiber-dependent fashion and showed a 100-fold increase in susceptibility to virus-mediated gene transfer. Identification of CAR as a receptor for these two unrelated and structurally distinct viral pathogens is important for understanding viral pathogenesis and has implications for therapeutic gene delivery with adenovirus vectors.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Engineering targeted viral vectors for gene therapy

            Key Points Translating knowledge of genetic disease mechanisms into gene therapies has been slow with limited clinical success. One major reason is that the transfer vectors, which are most often of viral origin, are not targeted sufficiently towards the cells of interest. To achieve successful delivery of genetic material, transductional targeting is often essential to enter the target cell and to avoid side effects from the transduction of non-target cells. Many techniques to target viral vectors to specific cells have been developed. They can be divided into three types: systems that use adaptor proteins from other viruses (pseudotyping); systems that use adaptors to couple the targeting ligand to the vector; and systems that genetically incorporate the targeting moiety into the viral genome. Whereas systems involving adaptor proteins are highly useful in preclinical evaluations, systems that make use of genetically incorporated targeting ligands are advantageous for clinical applications. Combinations of several targeting principles (including ablation of natural tropism, pseudotyping and adaptors) and novel combinations (such as the adeno-associated virus (AAV) genome in a phage vector) allow systemic vector application. An initial clinical study with a targeted retrovirus showed feasibility to transfer laboratory success to patient application, underlining that there are no principal regulatory barriers for targeted vectors. Systemic vector applications will be facilitated by enabling the vector to move beyond the vascular endothelium at specific sites, using transcytosis or cellular vehicles. The application of existing targeting techniques to new viral vector serotypes and new vector classes is extending the therapeutic capabilities further. Obstacles to systemic application of vectors are found in the blood as immune reactions against the vector and as binding of blood proteins to the vector. Some targeting approaches might have the potential to circumvent these obstacles. To preclinically evaluate new targeting strategies, several models that reflect the human situation to varying degrees are available. The use of primary cells, tissue-slice systems and transgenic animals seems to be especially promising. Imaging technologies provide the ability to monitor the vector in vivo in real time without sacrificing the animal model. These techniques facilitate vector targeting and biodistribution studies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              CD46 is a cellular receptor for group B adenoviruses.

              Group B adenoviruses, a subgenus of human Adenoviridae, are associated with a variety of often-fatal illnesses in immunocompromised individuals, including bone marrow transplant recipients and cancer and AIDS patients. Recently, group B adenovirus derivatives have gained interest as attractive gene therapy vectors because they can transduce target tissues, such as hematopoietic stem cells, dendritic cells and malignant tumor cells, that are refractory to infection by commonly used adenoviral vectors. Whereas many adenoviruses infect cells through the coxsackievirus and adenovirus receptor (CAR), group B adenoviruses use an alternate, as-yet-unidentified cellular attachment receptor. Using mass spectrometric analysis of proteins interacting with a group B fiber, we identified human CD46 as a cellular attachment receptor for most group B adenoviruses. We show that ectopic expression of human CD46 rendered nonhuman cells susceptible to infection with group B viruses in vitro and in vivo. In addition, both siRNA-mediated knockdown of CD46 and a soluble form of CD46 blocked infection of human cell lines and primary human cells. The discovery that group B adenoviruses use CD46, a ubiquitously expressed complement regulatory protein, as a cellular attachment receptor elucidates the diverse clinical manifestation of group B virus infections, and bears directly on the application of these vectors for gene therapy.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                10 September 2018
                September 2018
                : 19
                : 9
                : 2694
                Affiliations
                [1 ]Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Korea; manhhung.cnsh@ 123456gmail.com (M.-H.D.); tkphuong2609@ 123456gmail.com (P.K.T.); tonytoy@ 123456hanmail.net (Y.-S.C.); candy8900@ 123456naver.com (S.-Y.K.)
                [2 ]Institute of Genome Research, Vietnam Academy of Science and Technology, Hanoi 122121, Viet Nam
                [3 ]Department of Urology, Chonnam National University Medical School, Gwangju 61469, Korea; urohwang@ 123456jnu.ac.kr
                [4 ]Department of Pathology, Chonnam National University Medical School, Gwangju 61469, Korea; cchoi@ 123456jnu.ac.kr
                [5 ]Department of Hemato-Oncology, Chonnam National University Medical School, Gwangju 61469, Korea; shcho@ 123456jnu.ac.kr
                [6 ]Genitourinary Cancer Branch, Research Institute of National Cancer Center, Goyang 10408, Gyeonggi-do, Korea; leesj@ 123456ncc.re.kr
                [7 ]Institute of Molecular Life Sciences, University of Zurich, Zurich 8057, Switzerland; silvio.hemmi@ 123456imls.uzh.ch
                Author notes
                [* ]Correspondence: chjung@ 123456jnu.ac.kr ; Tel.: +82-613792705
                Article
                ijms-19-02694
                10.3390/ijms19092694
                6164063
                30201920
                69241b97-b2ca-4e18-a245-7ed20fa4d72a
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 August 2018
                : 06 September 2018
                Categories
                Article

                Molecular biology
                cd46,car,adenovirus,gene therapy,bladder cancer
                Molecular biology
                cd46, car, adenovirus, gene therapy, bladder cancer

                Comments

                Comment on this article