24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Comprehensive profiling of Epstein-Barr virus-encoded miRNA species associated with specific latency types in tumor cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Epstein-Barr virus (EBV) is an etiological cause of many human lymphocytic and epithelial malignancies. EBV expresses different genes that are associated with three latency types. To date, as many as 44 EBV-encoded miRNA species have been found, but their comprehensive profiles in the three types of latent infection that are associated with various types of tumors are not well documented.

          Methods

          In the present study, we utilized poly (A)-tailed quantitative real-time RT-PCR in combination with microarray analysis to measure the relative abundances of viral miRNA species in a subset of representative lymphoid and epithelial tumor cells with various EBV latency types.

          Results

          Our findings showed that the miR-BHRF1 and miR-BART families were expressed differentially in a tissue- and latency type-dependent manner. Specifically, in nasopharyngeal carcinoma (NPC) tissues and the EBV-positive cell line C666-1, the miR-BART family accounted for more than 10% of all detected miRNAs, suggesting that these miRNAs have important roles in maintaining latent EBV infections and in driving NPC tumorigenesis. In addition, EBV miRNA-based clustering analysis clearly distinguished between the three distinct EBV latency types, and our results suggested that a switch from type I to type III latency might occur in the Daudi BL cell line.

          Conclusions

          Our data provide a comprehensive profiling of the EBV miRNA transcriptome that is associated with specific tumor cells in the three types of latent EBV infection states. EBV miRNA species represent a cluster of non-encoding latency biomarkers that are differentially expressed in tumor cells and may help to distinguish between the different latency types.

          Related collections

          Most cited references43

          • Record: found
          • Abstract: found
          • Article: not found

          Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs.

          MicroRNAs (miRNAs) are a class of noncoding RNAs that post-transcriptionally regulate gene expression in plants and animals. To investigate the influence of miRNAs on transcript levels, we transfected miRNAs into human cells and used microarrays to examine changes in the messenger RNA profile. Here we show that delivering miR-124 causes the expression profile to shift towards that of brain, the organ in which miR-124 is preferentially expressed, whereas delivering miR-1 shifts the profile towards that of muscle, where miR-1 is preferentially expressed. In each case, about 100 messages were downregulated after 12 h. The 3' untranslated regions of these messages had a significant propensity to pair to the 5' region of the miRNA, as expected if many of these messages are the direct targets of the miRNAs. Our results suggest that metazoan miRNAs can reduce the levels of many of their target transcripts, not just the amount of protein deriving from these transcripts. Moreover, miR-1 and miR-124, and presumably other tissue-specific miRNAs, seem to downregulate a far greater number of targets than previously appreciated, thereby helping to define tissue-specific gene expression in humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SV40-encoded microRNAs regulate viral gene expression and reduce susceptibility to cytotoxic T cells.

            MicroRNAs (miRNAs) are small (approximately 22-nucleotide) RNAs that in lower organisms serve important regulatory roles in development and gene expression, typically by forming imperfect duplexes with target messenger RNAs. miRNAs have also been described in mammalian cells and in infections with Epstein-Barr virus (EBV), but the function of most of them is unknown. Although one EBV miRNA probably altered the processing of a viral mRNA, the regulatory significance of this event is uncertain, because other transcripts exist that can supply the targeted function. Here we report the identification of miRNAs encoded by simian virus 40 (SV40) and define their functional significance for viral infection. SVmiRNAs accumulate at late times in infection, are perfectly complementary to early viral mRNAs, and target those mRNAs for cleavage. This reduces the expression of viral T antigens but does not reduce the yield of infectious virus relative to that generated by a mutant lacking SVmiRNAs. However, wild-type SV40-infected cells are less sensitive than the mutant to lysis by cytotoxic T cells, and trigger less cytokine production by such cells. Thus, viral evolution has taken advantage of the miRNA pathway to generate effectors that enhance the probability of successful infection.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              An Epstein-Barr virus–encoded microRNA targets PUMA to promote host cell survival

              Epstein-Barr virus (EBV) is a herpesvirus associated with nasopharyngeal carcinoma (NPC), gastric carcinoma (GC), and other malignancies. EBV is the first human virus found to express microRNAs (miRNAs), the functions of which remain largely unknown. We report on the regulation of a cellular protein named p53 up-regulated modulator of apoptosis (PUMA) by an EBV miRNA known as miR-BART5, which is abundantly expressed in NPC and EBV-GC cells. Modulation of PUMA expression by miR-BART5 and anti–miR-BART5 oligonucleotide was demonstrated in EBV-positive cells. In addition, PUMA was found to be significantly underexpressed in ∼60% of human NPC tissues. Although expression of miR-BART5 rendered NPC and EBV-GC cells less sensitive to proapoptotic agents, apoptosis can be triggered by depleting miR-BART5 or inducing the expression of PUMA. Collectively, our findings suggest that EBV encodes an miRNA to facilitate the establishment of latent infection by promoting host cell survival.
                Bookmark

                Author and article information

                Contributors
                Journal
                Virol J
                Virol. J
                Virology Journal
                BioMed Central
                1743-422X
                2013
                26 October 2013
                : 10
                : 314
                Affiliations
                [1 ]State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
                [2 ]Department of Nuclear Medicine, the second People’s Hospital of Shenzhen, Shenzhen 518038, China
                [3 ]Department of Cancer Chemotherapy, the People’s Hospital of Gaozhou, Guangzhou, Guangdong province 525200, China
                [4 ]Department of Biochemistry & Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou Guangdong province, P.R. China
                [5 ]Department of Medicine, Division of Infectious Diseases, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6073, USA
                [6 ]School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou People’s Republic of China
                Article
                1743-422X-10-314
                10.1186/1743-422X-10-314
                4231337
                24161012
                692931c7-b605-4e90-8907-3664ac8700a7
                Copyright © 2013 Yang et al.; licensee BioMed Central Ltd.

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 4 June 2013
                : 21 October 2013
                Categories
                Research

                Microbiology & Virology
                epstein-barr virus,viral microrna,latency types,nasopharyngeal carcinoma,burkitt’s lymphoma

                Comments

                Comment on this article