19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular mechanisms underlying therapeutic potential of pericytes

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Pericytes are multipotent cells present in every vascularized tissue in the body. Despite the fact that they are well-known for more than a century, pericytes are still representing cells with intriguing properties. This is mainly because of their heterogeneity in terms of definition, tissue distribution, origin, phenotype and multi-functional properties. The body of knowledge illustrates importance of pericytes in the regulation of homeostatic and healing processes in the body.

          Main body

          In this review, we summarized current knowledge regarding identification, isolation, ontogeny and functional characteristics of pericytes and described molecular mechanisms involved in the crosstalk between pericytes and endothelial or immune cells. We highlighted the role of pericytes in the pathogenesis of fibrosis, diabetes-related complications (retinopathy, nephropathy, neuropathy and erectile dysfunction), ischemic organ failure, pulmonary hypertension, Alzheimer disease, tumor growth and metastasis with the focus on their therapeutic potential in the regenerative medicine. The functions and capabilities of pericytes are impressive and, as yet, incompletely understood. Molecular mechanisms responsible for pericyte-mediated regulation of vascular stability, angiogenesis and blood flow are well described while their regenerative and immunomodulatory characteristics are still not completely revealed. Strong evidence for pericytes’ participation in physiological, as well as in pathological conditions reveals a broad potential for their therapeutic use. Recently published results obtained in animal studies showed that transplantation of pericytes could positively influence the healing of bone, muscle and skin and could support revascularization. However, the differences in their phenotype and function as well as the lack of standardized procedure for their isolation and characterization limit their use in clinical trials.

          Conclusion

          Critical to further progress in clinical application of pericytes will be identification of tissue specific pericyte phenotype and function, validation and standardization of the procedure for their isolation that will enable establishment of precise clinical settings in which pericyte-based therapy will be efficiently applied.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Endothelial-mural cell signaling in vascular development and angiogenesis.

          Mural cells are essential components of blood vessels and are necessary for normal development, homeostasis, and organ function. Alterations in mural cell density or the stable attachment of mural cells to the endothelium is associated with several human diseases such as diabetic retinopathy, venous malformation, and hereditary stroke. In addition mural cells are implicated in regulating tumor growth and have thus been suggested as potential antiangiogenic targets in tumor therapy. In recent years our knowledge of mural cell function and endothelial-mural cell signaling has increased dramatically, and we now begin to understand the mechanistic basis of the key signaling pathways involved. This is mainly thanks to sophisticated in vivo experiments using a broad repertoire of genetic technologies. In this review, we summarize the five currently best understood signaling pathways implicated in mural cell biology. We discuss PDGFB/PDGFRbeta- dependent pericyte recruitment, as well as the role of angiopoietins and Tie receptors in vascular maturation. In addition, we highlight the effects of sphingosine-1-phosphate signaling on adherens junction assembly and vascular stability, as well as the role of TGF-beta-signaling in mural cell differentiation. We further reflect recent data suggesting an important function for Notch3 signaling in mural cell maturation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease.

            Neurovascular dysfunction contributes to Alzheimer's disease (AD). Cerebrovascular abnormalities and blood-brain barrier (BBB) damage have been shown in AD. The BBB dysfunction can lead to leakage of potentially neurotoxic plasma components in brain that may contribute to neuronal injury. Pericytes are integral in maintaining the BBB integrity. Pericyte-deficient mice develop a chronic BBB damage preceding neuronal injury. Moreover, loss of pericytes was associated with BBB breakdown in patients with amyotrophic lateral sclerosis. Here, we demonstrate a decrease in mural vascular cells in AD, and show that pericyte number and coverage in the cortex and hippocampus of AD subjects compared with neurologically intact controls are reduced by 59% and 60% (P < 0.01), and 32% and 33% (P < 0.01), respectively. An increase in extravascular immunoglobulin G (IgG) and fibrin deposition correlated with reductions in pericyte coverage in AD cases compared with controls; the Pearson's correlation coefficient r for the magnitude of BBB breakdown to IgG and fibrin vs. reduction in pericyte coverage was -0.96 (P < 0.01) and -0.81 (P < 0.01) in the cortex, respectively, and -0.86 (P < 0.01) and -0.98 (P < 0.01) in the hippocampus, respectively. Thus, deficiency in mural vascular cells may contribute to disrupted vascular barrier properties and resultant neuronal dysfunction during AD pathogenesis. © 2012 The Authors; Brain Pathology © 2012 International Society of Neuropathology.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation.

              We show that endothelial cell (EC)-generated vascular guidance tunnels (ie, matrix spaces created during tube formation) serve as conduits for the recruitment and motility of pericytes along EC ablumenal surfaces to facilitate vessel maturation events, including vascular basement membrane matrix assembly and restriction of EC tube diameter. During quail development, pericyte recruitment along microvascular tubes directly correlates with vascular basement membrane matrix deposition. Pericyte recruitment to EC tubes leads to specific induction of fibronectin and nidogen-1 (ie, matrix-bridging proteins that link together basement membrane components) as well as perlecan and laminin isoforms. Coincident with these events, up-regulation of integrins, alpha(5)beta(1), alpha(3)beta(1), alpha(6)beta(1), and alpha(1)beta(1), which bind fibronectin, nidogens, laminin isoforms, and collagen type IV, occurs in EC-pericyte cocultures, but not EC-only cultures. Integrin-blocking antibodies to these receptors, disruption of fibronectin matrix assembly, and small interfering RNA suppression of pericyte tissue inhibitor of metalloproteinase (TIMP)-3 (a known regulator of vascular tube stabilization) all lead to decreased EC basement membrane, resulting in increased vessel lumen diameter, a key indicator of dysfunctional EC-pericyte interactions. Thus, pericyte recruitment to EC-lined tubes during vasculogenesis is a stimulatory event controlling vascular basement membrane matrix assembly, a fundamental maturation step regulating the transition from vascular morphogenesis to stabilization.
                Bookmark

                Author and article information

                Contributors
                dr.harrell@regenerativeplant.org
                bojana.simovic@gmail.com
                crissy@regenerativeplant.org
                aleksandar@medfk.kg.ac.rs
                valentin.djonov@ana.unibe.ch
                +38134306800 , drvolarevic@yahoo.com
                Journal
                J Biomed Sci
                J. Biomed. Sci
                Journal of Biomedical Science
                BioMed Central (London )
                1021-7770
                1423-0127
                9 March 2018
                9 March 2018
                2018
                : 25
                : 21
                Affiliations
                [1 ]Regenerative Processing Plant, LLC, 34176 US Highway 19 N Palm Harbor, Palm Harbor, Florida USA
                [2 ]ISNI 0000 0000 8615 0106, GRID grid.413004.2, Department of Microbiology and immunology, Center for Molecular Medicine and Stem Cell Research, , University of Kragujevac, Serbia, Faculty of Medical Sciences, ; 69 Svetozar Markovic Street, Kragujevac, 34000 Serbia
                [3 ]ISNI 0000 0001 0726 5157, GRID grid.5734.5, University of Bern, Institute of Anatomy, ; Baltzerstrasse 2, Bern, Switzerland
                Article
                423
                10.1186/s12929-018-0423-7
                5844098
                29519245
                692abf30-50c7-416f-8ddd-757addf1ac37
                © The Author(s). 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 6 November 2017
                : 21 February 2018
                Funding
                Funded by: Swiss National Science Foundation project
                Award ID: SCOPES IZ73Z0_152454/1
                Award Recipient :
                Funded by: Novartis foundation for medical-biological research
                Award ID: 16C197
                Award Recipient :
                Funded by: Serbian Ministry of Science
                Award ID: ON175069 and ON175103
                Funded by: Faculty of Medical Sciences University of Kragujevac
                Award ID: MP01/14
                Categories
                Review
                Custom metadata
                © The Author(s) 2018

                Molecular medicine
                pericytes,cell therapy,vascular disorders
                Molecular medicine
                pericytes, cell therapy, vascular disorders

                Comments

                Comment on this article