Blog
About

60
views
0
recommends
+1 Recommend
0 collections
    3
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Trans-mitochondrial coordination of cristae at regulated membrane junctions

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reminiscent of bacterial quorum sensing, mammalian mitochondria participate in inter-organelle communication. However, physical structures that enhance or enable interactions between mitochondria have not been defined. Here we report that adjacent mitochondria exhibit coordination of inner mitochondrial membrane cristae at inter-mitochondrial junctions (IMJs). These electron-dense structures are conserved across species, resistant to genetic disruption of cristae organization, dynamically modulated by mitochondrial bioenergetics, independent of known inter-mitochondrial tethering proteins mitofusins and rapidly induced by the stable rapprochement of organelles via inducible synthetic linker technology. At the associated junctions, the cristae of adjacent mitochondria form parallel arrays perpendicular to the IMJ, consistent with a role in electrochemical coupling. These IMJs and associated cristae arrays may provide the structural basis to enhance the propagation of intracellular bioenergetic and apoptotic waves through mitochondrial networks within cells.

          Abstract

          Mammalian mitochondria are capable of inter-organelle communication, but connections between mitochondria have not been defined. Here, Picard et al. report the presence of inter-mitochondrial junctions, electron-dense regions with coordinated inner membrane cristae that do not depend on mitofusins for their formation.

          Related collections

          Most cited references 30

          • Record: found
          • Abstract: found
          • Article: not found

          Bacterial quorum-sensing network architectures.

          Quorum sensing is a cell-cell communication process in which bacteria use the production and detection of extracellular chemicals called autoinducers to monitor cell population density. Quorum sensing allows bacteria to synchronize the gene expression of the group, and thus act in unison. Here, we review the mechanisms involved in quorum sensing with a focus on the Vibrio harveyi and Vibrio cholerae quorum-sensing systems. We discuss the differences between these two quorum-sensing systems and the differences between them and other paradigmatic bacterial signal transduction systems. We argue that the Vibrio quorum-sensing systems are optimally designed to precisely translate extracellular autoinducer information into internal changes in gene expression. We describe how studies of the V. harveyi and V. cholerae quorum-sensing systems have revealed some of the fundamental mechanisms underpinning the evolution of collective behaviors.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Mitochondrial dynamics--mitochondrial fission and fusion in human diseases.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging interorganelle contacts and local calcium dynamics at the ER-mitochondrial interface.

              The ER-mitochondrial junction provides a local calcium signaling domain that is critical for both matching energy production with demand and the control of apoptosis. Here, we visualize ER-mitochondrial contact sites and monitor the localized [Ca(2+)] changes ([Ca(2+)](ER-mt)) using drug-inducible fluorescent interorganelle linkers. We show that all mitochondria have contacts with the ER, but plasma membrane (PM)-mitochondrial contacts are less frequent because of interleaving ER stacks in both RBL-2H3 and H9c2 cells. Single mitochondria display discrete patches of ER contacts and show heterogeneity in the ER-mitochondrial Ca(2+) transfer. Pericam-tagged linkers revealed IP(3)-induced [Ca(2+)](ER-mt) signals that exceeded 9 microM and endured buffering bulk cytoplasmic [Ca(2+)] increases. Altering linker length to modify the space available for the Ca(2+) transfer machinery had a biphasic effect on [Ca(2+)](ER-mt) signals. These studies provide direct evidence for the existence of high-Ca(2+) microdomains between the ER and mitochondria and suggest an optimal gap width for efficient Ca(2+) transfer. 2010 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                17 February 2015
                : 6
                Affiliations
                [1 ]Center for Mitochondrial and Epigenomic Medicine, The Children’s Hospital of Philadelphia and University of Pennsylvania , Philadelphia, Pennsylvania 19104, USA
                [2 ]MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University , Philadelphia, Pennsylvania 19107, USA
                [3 ]Department of Physiology, Semmelweis University , P.O. Box 259, Budapest H-1444, Hungary
                [4 ]Center for Pharmacogenomics, Department of Internal Medicine, Washington University School of Medicine , St Louis, Missouri 63110, USA
                [5 ]Penn EM Resource Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, USA
                Author notes
                Article
                ncomms7259
                10.1038/ncomms7259
                4332397
                25687472
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article