14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Characterization of human and rat glucagon-like peptide-1 receptors in the neurointermediate lobe: lack of coupling to either stimulation or inhibition of adenylyl cyclase.

      Endocrinology
      Adenylate Cyclase, antagonists & inhibitors, metabolism, Animals, Arginine Vasopressin, Autoradiography, Binding Sites, Cyclic AMP, Enzyme Activation, physiology, Glucagon, pharmacology, Glucagon-Like Peptide 1, Humans, Male, Membranes, Oxytocin, Peptide Fragments, Pituitary Gland, Posterior, Protein Precursors, Rats, Rats, Wistar, Receptors, Glucagon

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Glucagon-like peptide-1 (GLP-1) has been shown to bind to the posterior pituitary in the rat. We examined GLP-1 binding sites in human postmortem and rat pituitaries. Dense [125I]GLP-1 binding was seen in both human and rat posterior pituitary. In rat neurointermediate lobe membranes the binding site showed a Kd of 0.2 +/- 0.01 nM and a binding capacity of 600 +/- 33 fmol/mg protein (n = 3). In human pituitary membranes the binding site showed a Kd of 0.82 +/-0.05 nM and a binding capacity of 680 +/- 93 fmol/mg protein (n = 3). Chemical cross-linking showed a relative mol wt for the receptor-ligand complex of 73,100 +/- 1,400 (n = 3) in man and 59,300 +/- 900 (n = 3) in rat. GLP-1 (1 microM) failed to increase cAMP levels measured in rat neurointermediate lobes, whereas pituitary adenylate cyclase-activating polypeptide (100 nM) increased cAMP from a basal level of 14 +/-1 to 80 +/- 4 pmol/neurointermediate lobe 15 min (n = 5; P < 0.01). GLP-1 (up to 1 microM) did not affect the pituitary adenylate cyclase-activating polypeptide-stimulated cAMP levels. GLP-1 (up to 1 microM) also did not stimulate release of vasopressin or oxytocin from isolated rat neurointermediate lobes. The posterior pituitary shows the highest density of GLP-1-binding sites yet seen, but their function and signal transduction mechanism remain unknown.

          Related collections

          Author and article information

          Comments

          Comment on this article