9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genomic Characterization and Environmental Distribution of a Thermophilic Anaerobe Dissulfurirhabdus thermomarina SH388 T Involved in Disproportionation of Sulfur Compounds in Shallow Sea Hydrothermal Vents

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine hydrothermal systems are characterized by a pronounced biogeochemical sulfur cycle with the participation of sulfur-oxidizing, sulfate-reducing and sulfur-disproportionating microorganisms. The diversity and metabolism of sulfur disproportionators are studied to a much lesser extent compared with other microbial groups. Dissulfurirhabdus thermomarina SH388 T is an anaerobic thermophilic bacterium isolated from a shallow sea hydrothermal vent. D. thermomarina is an obligate chemolithoautotroph able to grow by the disproportionation of sulfite and elemental sulfur. Here, we present the results of the sequencing and analysis of the high-quality draft genome of strain SH388 T. The genome consists of a one circular chromosome of 2,461,642 base pairs, has a G + C content of 71.1 mol% and 2267 protein-coding sequences. The genome analysis revealed a complete set of genes essential to CO 2 fixation via the reductive acetyl-CoA (Wood-Ljungdahl) pathway and gluconeogenesis. The genome of D. thermomarina encodes a complete set of genes necessary for the dissimilatory reduction of sulfates, which are probably involved in the disproportionation of sulfur. Data on the occurrences of Dissulfurirhabdus 16S rRNA gene sequences in gene libraries and metagenome datasets showed the worldwide distribution of the members of this genus. This study expands our knowledge of the microbial contribution into carbon and sulfur cycles in the marine hydrothermal environments.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets

          Abstract IslandViewer (http://www.pathogenomics.sfu.ca/islandviewer/) is a widely-used webserver for the prediction and interactive visualization of genomic islands (GIs, regions of probable horizontal origin) in bacterial and archaeal genomes. GIs disproportionately encode factors that enhance the adaptability and competitiveness of the microbe within a niche, including virulence factors and other medically or environmentally important adaptations. We report here the release of IslandViewer 4, with novel features to accommodate the needs of larger-scale microbial genomics analysis, while expanding GI predictions and improving its flexible visualization interface. A user management web interface as well as an HTTP API for batch analyses are now provided with a secured authentication to facilitate the submission of larger numbers of genomes and the retrieval of results. In addition, IslandViewer's integrated GI predictions from multiple methods have been improved and expanded by integrating the precise Islander method for pre-computed genomes, as well as an updated IslandPath-DIMOB for both pre-computed and user-supplied custom genome analysis. Finally, pre-computed predictions including virulence factors and antimicrobial resistance are now available for 6193 complete bacterial and archaeal strains publicly available in RefSeq. IslandViewer 4 provides key enhancements to facilitate the analysis of GIs and better understand their role in the evolution of successful environmental microbes and pathogens.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication

            Abstract Summary We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. Availability and implementation The software is implemented in Python 3 and runs in both Python 2.7 and 3.4—on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. Contact yn@nig.ac.jp Supplementary information Supplementary data are available at Bioinformatics online.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              HydDB: A web tool for hydrogenase classification and analysis

              H2 metabolism is proposed to be the most ancient and diverse mechanism of energy-conservation. The metalloenzymes mediating this metabolism, hydrogenases, are encoded by over 60 microbial phyla and are present in all major ecosystems. We developed a classification system and web tool, HydDB, for the structural and functional analysis of these enzymes. We show that hydrogenase function can be predicted by primary sequence alone using an expanded classification scheme (comprising 29 [NiFe], 8 [FeFe], and 1 [Fe] hydrogenase classes) that defines 11 new classes with distinct biological functions. Using this scheme, we built a web tool that rapidly and reliably classifies hydrogenase primary sequences using a combination of k-nearest neighbors’ algorithms and CDD referencing. Demonstrating its capacity, the tool reliably predicted hydrogenase content and function in 12 newly-sequenced bacteria, archaea, and eukaryotes. HydDB provides the capacity to browse the amino acid sequences of 3248 annotated hydrogenase catalytic subunits and also contains a detailed repository of physiological, biochemical, and structural information about the 38 hydrogenase classes defined here. The database and classifier are freely and publicly available at http://services.birc.au.dk/hyddb/
                Bookmark

                Author and article information

                Journal
                Microorganisms
                Microorganisms
                microorganisms
                Microorganisms
                MDPI
                2076-2607
                27 July 2020
                August 2020
                : 8
                : 8
                : 1132
                Affiliations
                [1 ]Univ Brest, CNRS, IFREMER, LIA1211, Laboratoire de Microbiologie des Environnements Extrêmes LM2E, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; Maxime.Allioux@ 123456univ-brest.fr (M.A.); steven.yvenou@ 123456gmail.com (S.Y.); Mohamed.Jebbar@ 123456univ-brest.fr (M.J.)
                [2 ]Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, 117312 Moscow, Russia; gslobodkina@ 123456mail.ru (G.S.); aslobodkin@ 123456hotmail.com (A.S.)
                [3 ]Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; shaozongze@ 123456tio.org.cn
                Author notes
                Author information
                https://orcid.org/0000-0002-4784-090X
                https://orcid.org/0000-0003-3879-4400
                Article
                microorganisms-08-01132
                10.3390/microorganisms8081132
                7463578
                32727039
                6942a290-f298-47bb-b2b8-8cdd65132dec
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 05 July 2020
                : 24 July 2020
                Categories
                Article

                genome annotation,dissulfurirhabdus,shallow sea hydrothermal vents,inorganic sulfur compound disproportionation

                Comments

                Comment on this article