18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Role of HPA Axis and Allopregnanolone on the Neurobiology of Major Depressive Disorders and PTSD

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Under stressful conditions, the hypothalamic-pituitary-adrenal (HPA) axis acts to promote transitory physiological adaptations that are often resolved after the stressful stimulus is no longer present. In addition to corticosteroids (e.g., cortisol), the neurosteroid allopregnanolone (3α,5α-tetrahydroprogesterone, 3α-hydroxy-5α-pregnan-20-one) participates in negative feedback mechanisms that restore homeostasis. Chronic, repeated exposure to stress impairs the responsivity of the HPA axis and dampens allopregnanolone levels, participating in the etiopathology of psychiatric disorders, such as major depressive disorder (MDD) and post-traumatic stress disorder (PTSD). MDD and PTSD patients present abnormalities in the HPA axis regulation, such as altered cortisol levels or failure to suppress cortisol release in the dexamethasone suppression test. Herein, we review the neurophysiological role of allopregnanolone both as a potent and positive GABAergic neuromodulator but also in its capacity of inhibiting the HPA axis. The allopregnanolone function in the mechanisms that recapitulate stress-induced pathophysiology, including MDD and PTSD, and its potential as both a treatment target and as a biomarker for these disorders is discussed.

          Related collections

          Most cited references84

          • Record: found
          • Abstract: found
          • Article: not found

          Stress and the individual. Mechanisms leading to disease.

          This article presents a new formulation of the relationship between stress and the processes leading to disease. It emphasizes the hidden cost of chronic stress to the body over long time periods, which act as a predisposing factor for the effects of acute, stressful life events. It also presents a model showing how individual differences in the susceptibility to stress are tied to individual behavioral responses to environmental challenges that are coupled to physiologic and pathophysiologic responses. Published original articles from human and animal studies and selected reviews. Literature was surveyed using MEDLINE. Independent extraction and cross-referencing by us. Stress is frequently seen as a significant contributor to disease, and clinical evidence is mounting for specific effects of stress on immune and cardiovascular systems. Yet, until recently, aspects of stress that precipitate disease have been obscure. The concept of homeostasis has failed to help us understand the hidden toll of chronic stress on the body. Rather than maintaining constancy, the physiologic systems within the body fluctuate to meet demands from external forces, a state termed allostasis. In this article, we extend the concept of allostasis over the dimension of time and we define allostatic load as the cost of chronic exposure to fluctuating or heightened neural or neuroendocrine response resulting from repeated or chronic environmental challenge that an individual reacts to as being particularly stressful. This new formulation emphasizes the cascading relationships, beginning early in life, between environmental factors and genetic predispositions that lead to large individual differences in susceptibility to stress and, in some cases, to disease. There are now empirical studies based on this formulation, as well as new insights into mechanisms involving specific changes in neural, neuroendocrine, and immune systems. The practical implications of this formulation for clinical practice and further research are discussed.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            From stress to inflammation and major depressive disorder: a social signal transduction theory of depression.

            Major life stressors, especially those involving interpersonal stress and social rejection, are among the strongest proximal risk factors for depression. In this review, we propose a biologically plausible, multilevel theory that describes neural, physiologic, molecular, and genomic mechanisms that link experiences of social-environmental stress with internal biological processes that drive depression pathogenesis. Central to this social signal transduction theory of depression is the hypothesis that experiences of social threat and adversity up-regulate components of the immune system involved in inflammation. The key mediators of this response, called proinflammatory cytokines, can in turn elicit profound changes in behavior, which include the initiation of depressive symptoms such as sad mood, anhedonia, fatigue, psychomotor retardation, and social-behavioral withdrawal. This highly conserved biological response to adversity is critical for survival during times of actual physical threat or injury. However, this response can also be activated by modern-day social, symbolic, or imagined threats, leading to an increasingly proinflammatory phenotype that may be a key phenomenon driving depression pathogenesis and recurrence, as well as the overlap of depression with several somatic conditions including asthma, rheumatoid arthritis, chronic pain, metabolic syndrome, cardiovascular disease, obesity, and neurodegeneration. Insights from this theory may thus shed light on several important questions including how depression develops, why it frequently recurs, why it is strongly predicted by early life stress, and why it often co-occurs with symptoms of anxiety and with certain physical disease conditions. This work may also suggest new opportunities for preventing and treating depression by targeting inflammation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Depression and hypothalamic-pituitary-adrenal activation: a quantitative summary of four decades of research.

              To summarize quantitatively the literature comparing hypothalamic-pituitary-adrenal (HPA) axis function between depressed and nondepressed individuals and to describe the important sources of variability in this literature. These sources include methodological differences between studies, as well as demographic or clinical differences between depressed samples.
                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                23 May 2021
                June 2021
                : 22
                : 11
                : 5495
                Affiliations
                [1 ]Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre 90050-170, RS, Brazil; felipeba@ 123456ufcspa.edu.br (F.B.A.); helenbar@ 123456ufcspa.edu.br (H.M.T.B.)
                [2 ]The Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, 1601 W. Taylor Str., Chicago, IL 60612, USA
                Author notes
                Author information
                https://orcid.org/0000-0003-4146-0057
                https://orcid.org/0000-0001-7541-4855
                Article
                ijms-22-05495
                10.3390/ijms22115495
                8197074
                34071053
                6944f3e8-988b-48b6-b324-71ec02e6b051
                © 2021 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( https://creativecommons.org/licenses/by/4.0/).

                History
                : 31 March 2021
                : 22 May 2021
                Categories
                Review

                Molecular biology
                stress,hypothalamus-pituitary-adrenal axis,neurosteroids,depression,brexanolone,ptsd
                Molecular biology
                stress, hypothalamus-pituitary-adrenal axis, neurosteroids, depression, brexanolone, ptsd

                Comments

                Comment on this article