105
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Submit your digital health research with an established publisher
      - celebrating 25 years of open access

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Behavioral Functionality of Mobile Apps in Health Interventions: A Systematic Review of the Literature

      review-article
      , MPH(c) 1 , , , MPH 1 , , MPH, PhD 1 , , MPH, PhD 2
      (Reviewer), (Reviewer)
      JMIR mHealth and uHealth
      JMIR Publications Inc.
      smartphone, app, health behavior, systematic review, interventions

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Several thousand mobile phone apps are available to download to mobile phones for health and fitness. Mobile phones may provide a unique means of administering health interventions to populations.

          Objective

          The purpose of this systematic review was to systematically search and describe the literature on mobile apps used in health behavior interventions, describe the behavioral features and focus of health apps, and to evaluate the potential of apps to disseminate health behavior interventions.

          Methods

          We conducted a review of the literature in September 2014 using key search terms in several relevant scientific journal databases. Only English articles pertaining to health interventions using mobile phone apps were included in the final sample.

          Results

          The 24 studies identified for this review were primarily feasibility and pilot studies of mobile apps with small sample sizes. All studies were informed by behavioral theories or strategies, with self-monitoring as the most common construct. Acceptability of mobile phone apps was high among mobile phone users.

          Conclusions

          The lack of large sample studies using mobile phone apps may signal a need for additional studies on the potential use of mobile apps to assist individuals in changing their health behaviors. Of these studies, there is early evidence that apps are well received by users. Based on available research, mobile apps may be considered a feasible and acceptable means of administering health interventions, but a greater number of studies and more rigorous research and evaluations are needed to determine efficacy and establish evidence for best practices.

          Related collections

          Most cited references38

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Harnessing Context Sensing to Develop a Mobile Intervention for Depression

          Background Mobile phone sensors can be used to develop context-aware systems that automatically detect when patients require assistance. Mobile phones can also provide ecological momentary interventions that deliver tailored assistance during problematic situations. However, such approaches have not yet been used to treat major depressive disorder. Objective The purpose of this study was to investigate the technical feasibility, functional reliability, and patient satisfaction with Mobilyze!, a mobile phone- and Internet-based intervention including ecological momentary intervention and context sensing. Methods We developed a mobile phone application and supporting architecture, in which machine learning models (ie, learners) predicted patients’ mood, emotions, cognitive/motivational states, activities, environmental context, and social context based on at least 38 concurrent phone sensor values (eg, global positioning system, ambient light, recent calls). The website included feedback graphs illustrating correlations between patients’ self-reported states, as well as didactics and tools teaching patients behavioral activation concepts. Brief telephone calls and emails with a clinician were used to promote adherence. We enrolled 8 adults with major depressive disorder in a single-arm pilot study to receive Mobilyze! and complete clinical assessments for 8 weeks. Results Promising accuracy rates (60% to 91%) were achieved by learners predicting categorical contextual states (eg, location). For states rated on scales (eg, mood), predictive capability was poor. Participants were satisfied with the phone application and improved significantly on self-reported depressive symptoms (betaweek = –.82, P < .001, per-protocol Cohen d = 3.43) and interview measures of depressive symptoms (betaweek = –.81, P < .001, per-protocol Cohen d = 3.55). Participants also became less likely to meet criteria for major depressive disorder diagnosis (bweek = –.65, P = .03, per-protocol remission rate = 85.71%). Comorbid anxiety symptoms also decreased (betaweek = –.71, P < .001, per-protocol Cohen d = 2.58). Conclusions Mobilyze! is a scalable, feasible intervention with preliminary evidence of efficacy. To our knowledge, it is the first ecological momentary intervention for unipolar depression, as well as one of the first attempts to use context sensing to identify mental health-related states. Several lessons learned regarding technical functionality, data mining, and software development process are discussed. Trial Registration Clinicaltrials.gov NCT01107041; http://clinicaltrials.gov/ct2/show/NCT01107041 (Archived by WebCite at http://www.webcitation.org/60CVjPH0n)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Features of Mobile Diabetes Applications: Review of the Literature and Analysis of Current Applications Compared Against Evidence-Based Guidelines

            Background Interest in mobile health (mHealth) applications for self-management of diabetes is growing. In July 2009, we found 60 diabetes applications on iTunes for iPhone; by February 2011 the number had increased by more than 400% to 260. Other mobile platforms reflect a similar trend. Despite the growth, research on both the design and the use of diabetes mHealth applications is scarce. Furthermore, the potential influence of social media on diabetes mHealth applications is largely unexplored. Objective Our objective was to study the salient features of mobile applications for diabetes care, in contrast to clinical guideline recommendations for diabetes self-management. These clinical guidelines are published by health authorities or associations such as the National Institute for Health and Clinical Excellence in the United Kingdom and the American Diabetes Association. Methods We searched online vendor markets (online stores for Apple iPhone, Google Android, BlackBerry, and Nokia Symbian), journal databases, and gray literature related to diabetes mobile applications. We included applications that featured a component for self-monitoring of blood glucose and excluded applications without English-language user interfaces, as well as those intended exclusively for health care professionals. We surveyed the following features: (1) self-monitoring: (1.1) blood glucose, (1.2) weight, (1.3) physical activity, (1.4) diet, (1.5) insulin and medication, and (1.6) blood pressure, (2) education, (3) disease-related alerts and reminders, (4) integration of social media functions, (5) disease-related data export and communication, and (6) synchronization with personal health record (PHR) systems or patient portals. We then contrasted the prevalence of these features with guideline recommendations. Results The search resulted in 973 matches, of which 137 met the selection criteria. The four most prevalent features of the applications available on the online markets (n = 101) were (1) insulin and medication recording, 63 (62%), (2) data export and communication, 61 (60%), (3) diet recording, 47 (47%), and (4) weight management, 43 (43%). From the literature search (n = 26), the most prevalent features were (1) PHR or Web server synchronization, 18 (69%), (2) insulin and medication recording, 17 (65%), (3) diet recording, 17 (65%), and (4) data export and communication, 16 (62%). Interestingly, although clinical guidelines widely refer to the importance of education, this is missing from the top functionalities in both cases. Conclusions While a wide selection of mobile applications seems to be available for people with diabetes, this study shows there are obvious gaps between the evidence-based recommendations and the functionality used in study interventions or found in online markets. Current results confirm personalized education as an underrepresented feature in diabetes mobile applications. We found no studies evaluating social media concepts in diabetes self-management on mobile devices, and its potential remains largely unexplored.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Just a Fad? Gamification in Health and Fitness Apps

              Background Gamification has been a predominant focus of the health app industry in recent years. However, to our knowledge, there has yet to be a review of gamification elements in relation to health behavior constructs, or insight into the true proliferation of gamification in health apps. Objective The objective of this study was to identify the extent to which gamification is used in health apps, and analyze gamification of health and fitness apps as a potential component of influence on a consumer’s health behavior. Methods An analysis of health and fitness apps related to physical activity and diet was conducted among apps in the Apple App Store in the winter of 2014. This analysis reviewed a sample of 132 apps for the 10 effective game elements, the 6 core components of health gamification, and 13 core health behavior constructs. A regression analysis was conducted in order to measure the correlation between health behavior constructs, gamification components, and effective game elements. Results This review of the most popular apps showed widespread use of gamification principles, but low adherence to any professional guidelines or industry standard. Regression analysis showed that game elements were associated with gamification (P<.001). Behavioral theory was associated with gamification (P<.05), but not game elements, and upon further analysis gamification was only associated with composite motivational behavior scores (P<.001), and not capacity or opportunity/trigger. Conclusions This research, to our knowledge, represents the first comprehensive review of gamification use in health and fitness apps, and the potential to impact health behavior. The results show that use of gamification in health and fitness apps has become immensely popular, as evidenced by the number of apps found in the Apple App Store containing at least some components of gamification. This shows a lack of integrating important elements of behavioral theory from the app industry, which can potentially impact the efficacy of gamification apps to change behavior. Apps represent a very promising, burgeoning market and landscape in which to disseminate health behavior change interventions. Initial results show an abundant use of gamification in health and fitness apps, which necessitates the in-depth study and evaluation of the potential of gamification to change health behaviors.
                Bookmark

                Author and article information

                Contributors
                Journal
                JMIR Mhealth Uhealth
                JMIR Mhealth Uhealth
                JMU
                JMIR mHealth and uHealth
                JMIR Publications Inc. (Toronto, Canada )
                2291-5222
                Jan-Mar 2015
                26 February 2015
                : 3
                : 1
                : e20
                Affiliations
                [1] 1Computational Health Science Research Group Department of Health Science Brigham Young University Provo, UTUnited States
                [2] 2Center for Health Communication University of Texas Austin, TXUnited States
                Author notes
                Corresponding Author: Hannah E Payne hannahp413@ 123456gmail.com
                Author information
                http://orcid.org/0000-0003-4109-1634
                http://orcid.org/0000-0003-4407-5760
                http://orcid.org/0000-0003-1086-3865
                http://orcid.org/0000-0002-2045-4005
                Article
                v3i1e20
                10.2196/mhealth.3335
                4376122
                25803705
                694e7064-d360-4122-b333-36e90b876180
                ©Hannah E Payne, Cameron Lister, Joshua H West, Jay M Bernhardt. Originally published in JMIR Mhealth and Uhealth (http://mhealth.jmir.org), 26.02.2015.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work, first published in JMIR mhealth and uhealth, is properly cited. The complete bibliographic information, a link to the original publication on http://mhealth.jmir.org/, as well as this copyright and license information must be included.

                History
                : 22 February 2014
                : 02 May 2014
                : 22 May 2014
                : 22 January 2015
                Categories
                Review
                Review

                smartphone,app,health behavior,systematic review,interventions

                Comments

                Comment on this article