32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Fully Magnetically Levitated Circulatory Pump for Advanced Heart Failure.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background Continuous-flow left ventricular assist systems increase the rate of survival among patients with advanced heart failure but are associated with the development of pump thrombosis. We investigated the effects of a new magnetically levitated centrifugal continuous-flow pump that was engineered to avert thrombosis. Methods We randomly assigned patients with advanced heart failure to receive either the new centrifugal continuous-flow pump or a commercially available axial continuous-flow pump. Patients could be enrolled irrespective of the intended goal of pump support (bridge to transplantation or destination therapy). The primary end point was a composite of survival free of disabling stroke (with disabling stroke indicated by a modified Rankin score >3; scores range from 0 to 6, with higher scores indicating more severe disability) or survival free of reoperation to replace or remove the device at 6 months after implantation. The trial was powered for noninferiority testing of the primary end point (noninferiority margin, -10 percentage points). Results Of 294 patients, 152 were assigned to the centrifugal-flow pump group and 142 to the axial-flow pump group. In the intention-to-treat population, the primary end point occurred in 131 patients (86.2%) in the centrifugal-flow pump group and in 109 (76.8%) in the axial-flow pump group (absolute difference, 9.4 percentage points; 95% lower confidence boundary, -2.1 [P<0.001 for noninferiority]; hazard ratio, 0.55; 95% confidence interval [CI], 0.32 to 0.95 [two-tailed P=0.04 for superiority]). There were no significant between-group differences in the rates of death or disabling stroke, but reoperation for pump malfunction was less frequent in the centrifugal-flow pump group than in the axial-flow pump group (1 [0.7%] vs. 11 [7.7%]; hazard ratio, 0.08; 95% CI, 0.01 to 0.60; P=0.002). Suspected or confirmed pump thrombosis occurred in no patients in the centrifugal-flow pump group and in 14 patients (10.1%) in the axial-flow pump group. Conclusions Among patients with advanced heart failure, implantation of a fully magnetically levitated centrifugal-flow pump was associated with better outcomes at 6 months than was implantation of an axial-flow pump, primarily because of the lower rate of reoperation for pump malfunction. (Funded by St. Jude Medical; MOMENTUM 3 ClinicalTrials.gov number, NCT02224755 .).

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          Seventh INTERMACS annual report: 15,000 patients and counting.

          The seventh annual report of the Interagency Registry for Mechanically Assisted Circulatory Support (INTERMACS) summarizes the first 9 years of patient enrollment. The Registry includes >15,000 patients from 158 participating hospitals. Trends in device strategy, patient profile at implant and survival are presented. Risk factors for mortality with continuous-flow pumps are updated, and the major causes/modes of death are presented. The adverse event burden is compared between eras, and health-related quality of life is reviewed. A detailed analysis of outcomes after mechanical circulatory support for ambulatory heart failure is presented. Recent summary data from PediMACS and MedaMACS is included. With the current continuous-flow devices, survival at 1 and 2 years is 80% and 70%, respectively.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Unexpected abrupt increase in left ventricular assist device thrombosis.

            We observed an apparent increase in the rate of device thrombosis among patients who received the HeartMate II left ventricular assist device, as compared with preapproval clinical-trial results and initial experience. We investigated the occurrence of pump thrombosis and elevated lactate dehydrogenase (LDH) levels, LDH levels presaging thrombosis (and associated hemolysis), and outcomes of different management strategies in a multi-institutional study. We obtained data from 837 patients at three institutions, where 895 devices were implanted from 2004 through mid-2013; the mean (±SD) age of the patients was 55±14 years. The primary end point was confirmed pump thrombosis. Secondary end points were confirmed and suspected thrombosis, longitudinal LDH levels, and outcomes after pump thrombosis. A total of 72 pump thromboses were confirmed in 66 patients; an additional 36 thromboses in unique devices were suspected. Starting in approximately March 2011, the occurrence of confirmed pump thrombosis at 3 months after implantation increased from 2.2% (95% confidence interval [CI], 1.5 to 3.4) to 8.4% (95% CI, 5.0 to 13.9) by January 1, 2013. Before March 1, 2011, the median time from implantation to thrombosis was 18.6 months (95% CI, 0.5 to 52.7), and from March 2011 onward, it was 2.7 months (95% CI, 0.0 to 18.6). The occurrence of elevated LDH levels within 3 months after implantation mirrored that of thrombosis. Thrombosis was presaged by LDH levels that more than doubled, from 540 IU per liter to 1490 IU per liter, within the weeks before diagnosis. Thrombosis was managed by heart transplantation in 11 patients (1 patient died 31 days after transplantation) and by pump replacement in 21, with mortality equivalent to that among patients without thrombosis; among 40 thromboses in 40 patients who did not undergo transplantation or pump replacement, actuarial mortality was 48.2% (95% CI, 31.6 to 65.2) in the ensuing 6 months after pump thrombosis. The rate of pump thrombosis related to the use of the HeartMate II has been increasing at our centers and is associated with substantial morbidity and mortality.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              An analysis of pump thrombus events in patients in the HeartWare ADVANCE bridge to transplant and continued access protocol trial.

              The HeartWare left ventricular assist device (HVAD, HeartWare Inc, Framingham, MA) is the first implantable centrifugal continuous-flow pump approved for use as a bridge to transplantation. An infrequent but serious adverse event of LVAD support is thrombus ingestion or formation in the pump. In this study, we analyze the incidence of pump thrombus, evaluate the comparative effectiveness of various treatment strategies, and examine factors pre-disposing to the development of pump thrombus.
                Bookmark

                Author and article information

                Journal
                N. Engl. J. Med.
                The New England journal of medicine
                New England Journal of Medicine (NEJM/MMS)
                1533-4406
                0028-4793
                February 02 2017
                : 376
                : 5
                Affiliations
                [1 ] From the Brigham and Women's Hospital Heart and Vascular Center and Harvard Medical School, Boston (M.R.M.); Columbia University College of Physicians and Surgeons and New York Presbyterian Hospital (Y.N., P.C.C.) and Montefiore Einstein Center for Heart and Vascular Care (D.J.G., U.P.J.) - all in New York; University of Chicago School of Medicine and Medical Center, Chicago (N.U.); University of Colorado School of Medicine, Denver (J.C.C.); St. Vincent Heart Center, Indianapolis (M.N.W., C.S.); Duke Heart Center, Duke University, Durham, NC (C.A.M., C.B.P.); University of Michigan Health System, Ann Arbor (F.D.P., K.D.A.); Piedmont Hospital, Atlanta (D.A.D., K.M.); Washington University School of Medicine, St. Louis (A.I., G.A.E.); and Integris Baptist Medical Center, Oklahoma City (D.H., J.W.L.).
                Article
                10.1056/NEJMoa1610426
                27959709
                6951787a-658a-408a-941d-81ca93bf358e
                History

                Comments

                Comment on this article