142
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      National and Local Influenza Surveillance through Twitter: An Analysis of the 2012-2013 Influenza Epidemic

      research-article
      1 , 2 , 3 , * , 4
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Social media have been proposed as a data source for influenza surveillance because they have the potential to offer real-time access to millions of short, geographically localized messages containing information regarding personal well-being. However, accuracy of social media surveillance systems declines with media attention because media attention increases “chatter” – messages that are about influenza but that do not pertain to an actual infection – masking signs of true influenza prevalence. This paper summarizes our recently developed influenza infection detection algorithm that automatically distinguishes relevant tweets from other chatter, and we describe our current influenza surveillance system which was actively deployed during the full 2012-2013 influenza season. Our objective was to analyze the performance of this system during the most recent 2012–2013 influenza season and to analyze the performance at multiple levels of geographic granularity, unlike past studies that focused on national or regional surveillance. Our system’s influenza prevalence estimates were strongly correlated with surveillance data from the Centers for Disease Control and Prevention for the United States (r = 0.93, p < 0.001) as well as surveillance data from the Department of Health and Mental Hygiene of New York City (r = 0.88, p < 0.001). Our system detected the weekly change in direction (increasing or decreasing) of influenza prevalence with 85% accuracy, a nearly twofold increase over a simpler model, demonstrating the utility of explicitly distinguishing infection tweets from other chatter.

          Related collections

          Most cited references3

          • Record: found
          • Abstract: not found
          • Article: not found

          Digital disease detection--harnessing the Web for public health surveillance.

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Assessing Google Flu Trends Performance in the United States during the 2009 Influenza Virus A (H1N1) Pandemic

            Background Google Flu Trends (GFT) uses anonymized, aggregated internet search activity to provide near-real time estimates of influenza activity. GFT estimates have shown a strong correlation with official influenza surveillance data. The 2009 influenza virus A (H1N1) pandemic [pH1N1] provided the first opportunity to evaluate GFT during a non-seasonal influenza outbreak. In September 2009, an updated United States GFT model was developed using data from the beginning of pH1N1. Methodology/Principal Findings We evaluated the accuracy of each U.S. GFT model by comparing weekly estimates of ILI (influenza-like illness) activity with the U.S. Outpatient Influenza-like Illness Surveillance Network (ILINet). For each GFT model we calculated the correlation and RMSE (root mean square error) between model estimates and ILINet for four time periods: pre-H1N1, Summer H1N1, Winter H1N1, and H1N1 overall (Mar 2009–Dec 2009). We also compared the number of queries, query volume, and types of queries (e.g., influenza symptoms, influenza complications) in each model. Both models' estimates were highly correlated with ILINet pre-H1N1 and over the entire surveillance period, although the original model underestimated the magnitude of ILI activity during pH1N1. The updated model was more correlated with ILINet than the original model during Summer H1N1 (r = 0.95 and 0.29, respectively). The updated model included more search query terms than the original model, with more queries directly related to influenza infection, whereas the original model contained more queries related to influenza complications. Conclusions Internet search behavior changed during pH1N1, particularly in the categories “influenza complications” and “term for influenza.” The complications associated with pH1N1, the fact that pH1N1 began in the summer rather than winter, and changes in health-seeking behavior each may have played a part. Both GFT models performed well prior to and during pH1N1, although the updated model performed better during pH1N1, especially during the summer months.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Google Flu Trends: correlation with emergency department influenza rates and crowding metrics.

               Google Flu Trends (GFT) is a novel Internet-based influenza surveillance system that uses search engine query data to estimate influenza activity and is available in near real time. This study assesses the temporal correlation of city GFT data to cases of influenza and standard crowding indices from an inner-city emergency department (ED).  This study was performed during a 21-month period (from January 2009 through October 2010) at an urban academic hospital with physically and administratively separate adult and pediatric EDs. We collected weekly data from GFT for Baltimore, Maryland; ED Centers for Disease Control and Prevention-reported standardized influenzalike illness (ILI) data; laboratory-confirmed influenza data; and ED crowding indices (patient volume, number of patients who left without being seen, waiting room time, and length of stay for admitted and discharged patients). Pediatric and adult data were analyzed separately using cross-correlation with GFT.  GFT correlated with both number of positive influenza test results (adult ED, r = 0.876; pediatric ED, r = 0.718) and number of ED patients presenting with ILI (adult ED, r = 0.885; pediatric ED, r = 0.652). Pediatric but not adult crowding measures, such as total ED volume (r = 0.649) and leaving without being seen (r = 0.641), also had good correlation with GFT. Adult crowding measures for low-acuity patients, such as waiting room time (r = 0.421) and length of stay for discharged patients (r = 0.548), had moderate correlation with GFT.  City-level GFT shows strong correlation with influenza cases and ED ILI visits, validating its use as an ED surveillance tool. GFT correlated with several pediatric ED crowding measures and those for low-acuity adult patients.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                9 December 2013
                : 8
                : 12
                : e83672
                Affiliations
                [1 ]Department of Engineering Management and Systems Engineering, The George Washington University, Washington, District of Columbia, United States of America
                [2 ]Center for Advanced Modeling in the Social, Behavioral, and Health Sciences, Department of Emergency Medicine, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
                [3 ]Department of Computer Science and Center for Language and Speech Processing, Johns Hopkins University, Baltimore, Maryland, United States of America
                [4 ]Human Language Technology Center of Excellence and Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
                University of Warwick, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MJP MD. Performed the experiments: MJP. Analyzed the data: DAB MJP MD. Contributed reagents/materials/analysis tools: MD. Wrote the manuscript: DAB MJP MD.

                Article
                PONE-D-13-35058
                10.1371/journal.pone.0083672
                3857320
                24349542
                69532ec2-8a02-402c-87f1-d0f186d8ec8b
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 17 August 2013
                : 14 November 2013
                Funding
                Dr. Broniatowski is supported in part by Pioneer Award Number DP1OD003874 awarded to J.M. Epstein by the Office of the Director, National Institutes of Health. Mr. Paul is supported in part by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-0707427. Publication of this article was funded in part by the Open Access Promotion Fund of the Johns Hopkins University Libraries. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article