23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Loss of circadian clock gene expression is associated with tumor progression in breast cancer

      report

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Several studies suggest a link between circadian rhythm disturbances and tumorigenesis. However, the association between circadian clock genes and prognosis in breast cancer has not been systematically studied. Therefore, we examined the expression of 17 clock components in tumors from 766 node-negative breast cancer patients that were untreated in both neoadjuvant and adjuvant settings. In addition, their association with metastasis-free survival (MFS) and correlation to clinicopathological parameters were investigated. Aiming to estimate functionality of the clockwork, we studied clock gene expression relationships by correlation analysis. Higher expression of several clock genes (e.g., CLOCK, PER1, PER2, PER3, CRY2, NPAS2 and RORC) was found to be associated with longer MFS in univariate Cox regression analyses (HR<1 and FDR-adjusted P < 0.05). Stratification according to molecular subtype revealed prognostic relevance for PER1, PER3, CRY2 and NFIL3 in the ER+/HER2- subgroup, CLOCK and NPAS2 in the ER-/HER2- subtype, and ARNTL2 in HER2+ breast cancer. In the multivariate Cox model, only PER3 (HR = 0.66; P = 0.016) and RORC (HR = 0.42; P = 0.003) were found to be associated with survival outcome independent of established clinicopathological parameters. Pairwise correlations between functionally-related clock genes (e.g., PER2-PER3 and CRY2-PER3) were stronger in ER+, HER2- and low-grade carcinomas; whereas, weaker correlation coefficients were observed in ER- and HER2+ tumors, high-grade tumors and tumors that progressed to metastatic disease. In conclusion, loss of clock genes is associated with worse prognosis in breast cancer. Coordinated co-expression of clock genes, indicative of a functional circadian clock, is maintained in ER+, HER2-, low grade and non-metastasizing tumors but is compromised in more aggressive carcinomas.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Molecular components of the mammalian circadian clock.

          Circadian rhythms are approximately 24-h oscillations in behavior and physiology, which are internally generated and function to anticipate the environmental changes associated with the solar day. A conserved transcriptional-translational autoregulatory loop generates molecular oscillations of 'clock genes' at the cellular level. In mammals, the circadian system is organized in a hierarchical manner, in which a master pacemaker in the suprachiasmatic nucleus (SCN) regulates downstream oscillators in peripheral tissues. Recent findings have revealed that the clock is cell-autonomous and self-sustained not only in a central pacemaker, the SCN, but also in peripheral tissues and in dissociated cultured cells. It is becoming evident that specific contribution of each clock component and interactions among the components vary in a tissue-specific manner. Here, we review the general mechanisms of the circadian clockwork, describe recent findings that elucidate tissue-specific expression patterns of the clock genes and address the importance of circadian regulation in peripheral tissues for an organism's overall well-being.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes.

            Recently, several prognostic gene expression signatures have been identified; however, their performance has never been evaluated according to the previously described molecular subtypes based on the estrogen receptor (ER) and human epidermal growth factor receptor 2 (HER2), and their biological meaning has remained unclear. Here we aimed to perform a comprehensive meta-analysis integrating both clinicopathologic and gene expression data, focusing on the main molecular subtypes. We developed gene expression modules related to key biological processes in breast cancer such as tumor invasion, immune response, angiogenesis, apoptosis, proliferation, and ER and HER2 signaling, and then analyzed these modules together with clinical variables and several prognostic signatures on publicly available microarray studies (>2,100 patients). Multivariate analysis showed that in the ER+/HER2- subgroup, only the proliferation module and the histologic grade were significantly associated with clinical outcome. In the ER-/HER2- subgroup, only the immune response module was associated with prognosis, whereas in the HER2+ tumors, the tumor invasion and immune response modules displayed significant association with survival. Proliferation was identified as the most important component of several prognostic signatures, and their performance was limited to the ER+/HER2- subgroup. Although proliferation is the strongest parameter predicting clinical outcome in the ER+/HER2- subtype and the common denominator of most prognostic gene signatures, immune response and tumor invasion seem to be the main molecular processes associated with prognosis in the ER-/HER2- and HER2+ subgroups, respectively. These findings may help to define new clinicogenomic models and to identify new therapeutic strategies in the specific molecular subgroups.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              System-level identification of transcriptional circuits underlying mammalian circadian clocks.

              Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems.
                Bookmark

                Author and article information

                Journal
                Cell Cycle
                Cell Cycle
                KCCY
                Cell Cycle
                Taylor & Francis
                1538-4101
                1551-4005
                15 October 2014
                30 October 2014
                : 13
                : 20
                : 3282-3291
                Affiliations
                [1 ]Leibniz Research Centre for Working Environment an Human Factors (ifADo) at the TU Dortmund University ; Dortmund, Germany
                [2 ]Department of Statistics; TU Dortmund University ; Dortmund, Germany
                [3 ]Department of Obstetrics and Gynecology; Johannes Gutenberg University ; Mainz, Germany
                [4 ]Chronophysiology; University of Lübeck ; Lübeck, Germany
                Author notes
                [* ]Correspondence to: Cristina Cadenas; Email: cadenas@ 123456ifado.de
                Article
                954454
                10.4161/15384101.2014.954454
                4613905
                25485508
                6963f4d9-bd10-4330-a082-6dbeca88dd76
                © 2014 The Author(s). Published with license by Taylor & Francis Group, LLC© Cristina Cadenas, Leonie van de Sandt, Karolina Edlund, Miriam Lohr, Birte Hellwig, Rosemarie Marchan, Marcus Schmidt, Jörg Rahnenführer, Henrik Oster, and Jan G Hengstler

                This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. The moral rights of the named author(s) have been asserted.

                History
                : 1 July 2014
                : 8 August 2014
                Page count
                Figures: 4, Tables: 1, References: 41, Pages: 10
                Categories
                Reports

                Cell biology
                breast cancer,circadian clock,clock genes,estrogen receptor,metastasis-free survival,tumor progression

                Comments

                Comment on this article