37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Concentrations of Choline-Containing Compounds and Betaine in Common Foods

      1 , 1 , 2 , 1 , 2 , 1
      The Journal of Nutrition
      Oxford University Press (OUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Choline is important for normal membrane function, acetylcholine synthesis and methyl group metabolism; the choline requirement for humans is 550 mg/d for men (Adequate Intake). Betaine, a choline derivative, is important because of its role in the donation of methyl groups to homocysteine to form methionine. In tissues and foods, there are multiple choline compounds that contribute to total choline concentration (choline, glycerophosphocholine, phosphocholine, phosphatidylcholine and sphingomyelin). In this study, we collected representative food samples and analyzed the choline concentration of 145 common foods using liquid chromatography-mass spectrometry. Foods with the highest total choline concentration (mg/100 g) were: beef liver (418), chicken liver (290), eggs (251), wheat germ (152), bacon (125), dried soybeans (116) and pork (103). The foods with the highest betaine concentration (mg/100 g) were: wheat bran (1339), wheat germ (1241), spinach (645), pretzels (237), shrimp (218) and wheat bread (201). A number of epidemiologic studies have examined the relationship between dietary folic acid and cancer or heart disease. It may be helpful to also consider choline intake as a confounding factor because folate and choline methyl donation can be interchangeable.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Choline and human nutrition.

          Choline is crucial for sustaining life. It modulates the basic signaling processes within cells, is a structural element in membranes, and is vital during critical periods in brain development. Choline metabolism is closely interrelated with the metabolism of methionine and folate. We believe that the normal human diet provides sufficient choline to sustain healthy organ function. However, vulnerable populations may become choline deficient, including the growing infant, the pregnant or lactating woman, the cirrhotic, and the patient fed intravenously. Further studies of choline requirements in these groups are required.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Folic acid improves endothelial function in coronary artery disease via mechanisms largely independent of homocysteine lowering.

            Homocysteine is a risk factor for coronary artery disease (CAD), although a causal relation remains to be proven. The importance of determining direct causality rests in the fact that plasma homocysteine can be safely and inexpensively reduced by 25% with folic acid. This reduction is maximally achieved by doses of 0.4 mg/d. High-dose folic acid (5 mg/d) improves endothelial function in CAD, although the mechanism is controversial. It has been proposed that improvement occurs through reduction in total (tHcy) or free (non-protein bound) homocysteine (fHcy). We investigated the effects of folic acid on endothelial function before a change in homocysteine in patients with CAD. A randomized, placebo-controlled study of folic acid (5 mg/d) for 6 weeks was undertaken in 33 patients. Endothelial function, assessed by flow-mediated dilatation (FMD), was measured before, at 2 and 4 hours after the first dose of folic acid, and after 6 weeks of treatment. Plasma folate increased markedly by 1 hour (200 compared with 25.8 nmol/L; P<0.001). FMD improved at 2 hours (83 compared with 47 microm; P<0.001) and was largely complete by 4 hours (101 compared with 51 microm; P<0.001). tHcy did not significantly differ acutely (4-hour tHcy, 9.56 compared with 9.79 micromol/L; P=NS). fHcy did not differ at 3 hours but was slightly reduced at 4 hours (1.55 compared with 1.78 micromol/L; P=0.02). FMD improvement did not correlate with reductions in either fHcy or tHcy at any time. These data suggest that folic acid improves endothelial function in CAD acutely by a mechanism largely independent of homocysteine.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Quantitation of choline and its metabolites in tissues and foods by liquid chromatography/electrospray ionization-isotope dilution mass spectrometry.

              Choline is important for normal membrane function, acetylcholine synthesis, lipid transport, and methyl metabolism. The U.S. National Academy of Sciences recently set requirements for choline in the human diet. In tissues and foods, there are multiple choline compounds that contribute to choline content. Betaine, a derivative of choline, is also important because of its role in donation of methyl groups to homocysteine to form methionine. Radioisotopic, high-pressure liquid chromatography, and gas chromatography/isotope dilution mass spectrometry (GC/IDMS) methods are available for measurement of choline. However, these existing methods are cumbersome and time-consuming, and none measures all of the compounds of interest. In this study, we describe a new method for quantitation of choline, betaine, acetylcholine, glycerophosphocholine, cytidine diphosphocholine, phosphocholine, phosphatidylcholine, and sphingomyelin in liver, plasma, various foods, and brain using liquid chromatography/electrospray ionization-isotope dilution mass spectrometry (LC/ESI-IDMS). Choline compounds were extracted by and partitioned into organic and aqueous phases using methanol and chloroform and analyzed directly by LC/ESI-IDMS without the need for isolation and derivatization of each compound separately as was required by the GC/IDMS method. The new LC/ESI-IDMS method was validated using the existing published GC/IDMS method.
                Bookmark

                Author and article information

                Journal
                The Journal of Nutrition
                Oxford University Press (OUP)
                0022-3166
                1541-6100
                May 2003
                May 01 2003
                May 2003
                May 01 2003
                : 133
                : 5
                : 1302-1307
                Affiliations
                [1 ] Department of Nutrition, School of Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7461
                [2 ] U.S. Department of Agriculture, ARS, BHNRC, Nutrient Data Laboratory, Beltsville, MD 20705
                Article
                10.1093/jn/133.5.1302
                12730414
                696f65f5-a8ea-47ee-91c7-d54d1922648f
                © 2003
                History

                Comments

                Comment on this article