52
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Biomaterials and tissue engineering for scar management in wound care

      review-article
      , ,
      Burns & Trauma
      BioMed Central
      Biomaterials, Scar management, Wound healing, Tissue engineering

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Scars are a natural and unavoidable result from most wound repair procedures and the body’s physiological healing response. However, they scars can cause considerable functional impairment and emotional and social distress. There are different forms of treatments that have been adopted to manage or eliminate scar formation. This review covers the latest research in the past decade on using either natural agents or synthetic biomaterials in treatments for scar reduction.

          Related collections

          Most cited references58

          • Record: found
          • Abstract: found
          • Article: not found

          Cutaneous wound healing: recruiting developmental pathways for regeneration

          Following a skin injury, the damaged tissue is repaired through the coordinated biological actions that constitute the cutaneous healing response. In mammals, repaired skin is not identical to intact uninjured skin, however, and this disparity may be caused by differences in the mechanisms that regulate postnatal cutaneous wound repair compared to embryonic skin development. Improving our understanding of the molecular pathways that are involved in these processes is essential to generate new therapies for wound healing complications. Here we focus on the roles of several key developmental signaling pathways (Wnt/β-catenin, TGF-β, Hedgehog, Notch) in mammalian cutaneous wound repair, and compare this to their function in skin development. We discuss the varying responses to cutaneous injury across the taxa, ranging from complete regeneration to scar tissue formation. Finally, we outline how research into the role of developmental pathways during skin repair has contributed to current wound therapies, and holds potential for the development of more effective treatments.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mesenchymal stem cell therapy for attenuation of scar formation during wound healing

            Scars are a consequence of cutaneous wound healing that can be both unsightly and detrimental to the function of the tissue. Scar tissue is generated by excessive deposition of extracellular matrix tissue by wound healing fibroblasts and myofibroblasts, and although it is inferior to the uninjured skin, it is able to restore integrity to the boundary between the body and its environment. Scarring is not a necessary process to repair the dermal tissues. Rather, scar tissue forms due to specific mechanisms that occur during the adult wound healing process and are modulated primarily by the inflammatory response at the site of injury. Adult tissue-derived mesenchymal stem cells, which participate in normal wound healing, are trophic mediators of tissue repair. These cells participate in attenuating inflammation in the wound and reprogramming the resident immune and wound healing cells to favor tissue regeneration and inhibit fibrotic tissue formation. As a result, these cells have been considered and tested as a likely candidate for a cellular therapy to promote scar-less wound healing. This review identifies specific mechanisms by which mesenchymal stem cells can limit tissue fibrosis and summarizes recent in vivo studies where these cells have been used successfully to limit scar formation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey.

              Phenolic compounds of dark and clear honeys from Trás-os-Montes of Portugal were extracted with Amberlite XAD-2 and evaluated for their antioxidant and antimicrobial activities. The antioxidant effect was studied using the in vitro test capacity of scavenge the 2,2-diphenyl-1-picryhydrazyl (DPPH) free radical and of reducing power of iron (III)/ferricyanide complex. The antimicrobial activity was screened using three Gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus, Staphylococcus lentus) and three Gram-negative bacteria (Pseudomonas aeruginosa, Klebsiella pneumoniae and Escherichia coli). The results obtained from the partial identification of honey phenolic compounds by high-performance liquid chromatography with a diode array detector showed that p-hydroxibenzoic acid, cinnamic acid, naringenin, pinocembrin and chrysin are the phenolic compounds present in most of the samples analyzed. Antioxidant potential was dependent of honey extract concentration and the results showed that dark honey phenolic compounds had higher activity than the obtained from clear honey. In the biological assays, results showed that S. aureus were the most sensitive microrganisms and B. subtilis, S. lentus, K. pneumoniae and E. coli were each moderately sensitive to the antimicrobial activity of honey extracts. Nevertheless, no antimicrobial activity was observed in the test with P. aeruginosa.
                Bookmark

                Author and article information

                Contributors
                rahimnem@myumanitoba.ca
                soroosh.derakhshanfar@gmail.com
                wen.zhong@umanitoba.ca
                Journal
                Burns Trauma
                Burns Trauma
                Burns & Trauma
                BioMed Central (London )
                2321-3868
                2321-3876
                21 January 2017
                21 January 2017
                2017
                : 5
                : 4
                Affiliations
                ISNI 0000 0004 1936 9609, GRID grid.21613.37, , University of Manitoba, ; Winnipeg, MB Canada
                Article
                69
                10.1186/s41038-017-0069-9
                5251275
                28127573
                697180ab-e296-41d5-a899-e4da6fcb8547
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 11 March 2016
                : 12 January 2017
                Categories
                Review
                Custom metadata
                © The Author(s) 2017

                biomaterials,scar management,wound healing,tissue engineering

                Comments

                Comment on this article