8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Rising levels of atmospheric oxygen and evolution of Nrf2

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammals, the master transcription regulator of antioxidant defences is provided by the Nrf2 protein. Phylogenetic analyses of Nrf2 sequences are used here to derive a molecular clock that manifests persuasive evidence that Nrf2 orthologues emerged, and then diverged, at two time points that correlate with well-established geochemical and palaeobiological chronologies during progression of the ‘Great Oxygenation Event’. We demonstrate that orthologues of Nrf2 first appeared in fungi around 1.5 Ga during the Paleoproterozoic when photosynthetic oxygen was being absorbed into the oceans. A subsequent significant divergence in Nrf2 is seen during the split between fungi and the Metazoa approximately 1.0–1.2 Ga, at a time when oceanic ventilation released free oxygen to the atmosphere, but with most being absorbed by methane oxidation and oxidative weathering of land surfaces until approximately 800 Ma. Atmospheric oxygen levels thereafter accumulated giving rise to metazoan success known as the Cambrian explosion commencing at ~541 Ma. Atmospheric O 2 levels then rose in the mid Paleozoic (359–252 Ma), and Nrf2 diverged once again at the division between mammals and non-mammalian vertebrates during the Permian-Triassic boundary (~252 Ma). Understanding Nrf2 evolution as an effective antioxidant response may have repercussions for improved human health.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Tree of Life Reveals Clock-Like Speciation and Diversification

          Genomic data are rapidly resolving the tree of living species calibrated to time, the timetree of life, which will provide a framework for research in diverse fields of science. Previous analyses of taxonomically restricted timetrees have found a decline in the rate of diversification in many groups of organisms, often attributed to ecological interactions among species. Here, we have synthesized a global timetree of life from 2,274 studies representing 50,632 species and examined the pattern and rate of diversification as well as the timing of speciation. We found that species diversity has been mostly expanding overall and in many smaller groups of species, and that the rate of diversification in eukaryotes has been mostly constant. We also identified, and avoided, potential biases that may have influenced previous analyses of diversification including low levels of taxon sampling, small clade size, and the inclusion of stem branches in clade analyses. We found consistency in time-to-speciation among plants and animals, ∼2 My, as measured by intervals of crown and stem species times. Together, this clock-like change at different levels suggests that speciation and diversification are processes dominated by random events and that adaptive change is largely a separate process.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Cambrian conundrum: early divergence and later ecological success in the early history of animals.

            Diverse bilaterian clades emerged apparently within a few million years during the early Cambrian, and various environmental, developmental, and ecological causes have been proposed to explain this abrupt appearance. A compilation of the patterns of fossil and molecular diversification, comparative developmental data, and information on ecological feeding strategies indicate that the major animal clades diverged many tens of millions of years before their first appearance in the fossil record, demonstrating a macroevolutionary lag between the establishment of their developmental toolkits during the Cryogenian [(850 to 635 million years ago (Ma)], and the later ecological success of metazoans during the Ediacaran (635 to 541 Ma) and Cambrian (541 to 488 Ma) periods. We argue that this diversification involved new forms of developmental regulation, as well as innovations in networks of ecological interaction within the context of permissive environmental circumstances.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              NRF2 and cancer: the good, the bad and the importance of context.

              Many studies of chemopreventive drugs have suggested that their beneficial effects on suppression of carcinogenesis and many other chronic diseases are mediated through activation of the transcription factor NFE2-related factor 2 (NRF2). More recently, genetic analyses of human tumours have indicated that NRF2 may conversely be oncogenic and cause resistance to chemotherapy. It is therefore controversial whether the activation, or alternatively the inhibition, of NRF2 is a useful strategy for the prevention or treatment of cancer. This Opinion article aims to rationalize these conflicting perspectives by critiquing the context dependence of NRF2 functions and the experimental methods behind these conflicting data.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                14 June 2016
                2016
                : 6
                Affiliations
                [1 ]Institute of Pharmaceutical Science, King’s College London , United Kingdom
                [2 ]European Bioinformatics Institute, Wellcome Genome Campus , Cambridge, United Kingdom
                [3 ]Department of Chemistry, King’s College London , United Kingdom
                Author notes
                Article
                srep27740
                10.1038/srep27740
                4906274
                27297177
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article