18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Vascular Endothelial Growth Factor-A and Islet Vascularization Are Necessary in Developing, but Not Adult, Pancreatic Islets

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Pancreatic islets are highly vascularized mini-organs, and vascular endothelial growth factor (VEGF)-A is a critical factor in the development of islet vascularization. To investigate the role of VEGF-A and endothelial cells (ECs) in adult islets, we used complementary genetic approaches to temporally inactivate VEGF-A in developing mouse pancreatic and islet progenitor cells or in adult β-cells. Inactivation of VEGF-A early in development dramatically reduced pancreatic and islet vascularization, leading to reduced β-cell proliferation in both developing and adult islets and, ultimately, reduced β-cell mass and impaired glucose clearance. When VEGF-A was inactivated in adult β-cells, islet vascularization was reduced twofold. Surprisingly, even after 3 months of reduced islet vascularization, islet architecture and β-cell gene expression, mass, and function were preserved with only a minimal abnormality in glucose clearance. These data show that normal pancreatic VEGF-A expression is critical for the recruitment of ECs and the subsequent stimulation of endocrine cell proliferation during islet development. In contrast, although VEGF-A is required for maintaining the specialized vasculature observed in normal adult islets, adult β-cells can adapt and survive long-term reductions in islet vascularity. These results indicate that VEGF-A and islet vascularization have a lesser role in adult islet function and β-cell mass.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Pancreatic islet production of vascular endothelial growth factor--a is essential for islet vascularization, revascularization, and function.

          To investigate molecular mechanisms controlling islet vascularization and revascularization after transplantation, we examined pancreatic expression of three families of angiogenic factors and their receptors in differentiating endocrine cells and adult islets. Using intravital lectin labeling, we demonstrated that development of islet microvasculature and establishment of islet blood flow occur concomitantly with islet morphogenesis. Our genetic data indicate that vascular endothelial growth factor (VEGF)-A is a major regulator of islet vascularization and revascularization of transplanted islets. In spite of normal pancreatic insulin content and beta-cell mass, mice with beta-cell-reduced VEGF-A expression had impaired glucose-stimulated insulin secretion. By vascular or diffusion delivery of beta-cell secretagogues to islets, we showed that reduced insulin output is not a result of beta-cell dysfunction but rather caused by vascular alterations in islets. Taken together, our data indicate that the microvasculature plays an integral role in islet function. Factors modulating VEGF-A expression may influence islet vascularity and, consequently, the amount of insulin delivered into the systemic circulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            VEGF is required for growth and survival in neonatal mice.

            We employed two independent approaches to inactivate the angiogenic protein VEGF in newborn mice: inducible, Cre-loxP- mediated gene targeting, or administration of mFlt(1-3)-IgG, a soluble VEGF receptor chimeric protein. Partial inhibition of VEGF achieved by inducible gene targeting resulted in increased mortality, stunted body growth and impaired organ development, most notably of the liver. Administration of mFlt(1-3)-IgG, which achieves a higher degree of VEGF inhibition, resulted in nearly complete growth arrest and lethality. Ultrastructural analysis documented alterations in endothelial and other cell types. Histological and biochemical changes consistent with liver and renal failure were observed. Endothelial cells isolated from the liver of mFlt(1-3)-IgG-treated neonates demonstrated an increased apoptotic index, indicating that VEGF is required not only for proliferation but also for survival of endothelial cells. However, such treatment resulted in less significant alterations as the animal matured, and the dependence on VEGF was eventually lost some time after the fourth postnatal week. Administration of mFlt(1-3)-IgG to juvenile mice failed to induce apoptosis in liver endothelial cells. Thus, VEGF is essential for growth and survival in early postnatal life. However, in the fully developed animal, VEGF is likely to be involved primarily in active angiogenesis processes such as corpus luteum development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Glucose Metabolism In Vivo in Four Commonly Used Inbred Mouse Strains

              OBJECTIVE—To characterize differences in whole-body glucose metabolism between commonly used inbred mouse strains. RESEARCH DESIGN AND METHODS—Hyperinsulinemic-euglycemic (∼8.5 mmol/l) and -hypoglycemic (∼3.0 mmol/l) clamps were done in catheterized, 5-h-fasted mice to assess insulin action and hypoglycemic counter-regulatory responsiveness. Hyperglycemic clamps (∼15 mmol/l) were done to assess insulin secretion and compared with results in perifused islets. RESULTS—Insulin action and hypoglycemic counter-regulatory and insulin secretory phenotypes varied considerably in four inbred mouse strains. In vivo insulin secretion was greatest in 129X1/Sv mice, but the counter-regulatory response to hypoglycemia was blunted. FVB/N mice in vivo showed no increase in glucose-stimulated insulin secretion, relative hepatic insulin resistance, and the highest counter-regulatory response to hypoglycemia. In DBA/2 mice, insulin action was lowest among the strains, and islets isolated had the greatest glucose-stimulated insulin secretion in vitro. In C57BL/6 mice, in vivo physiological responses to hyperinsulinemia at euglycemia and hypoglycemia were intermediate relative to other strains. Insulin secretion by C57BL/6 mice was similar to that in other strains in contrast to the blunted glucose-stimulated insulin secretion from isolated islets. CONCLUSIONS—Strain-dependent differences exist in four inbred mouse strains frequently used for genetic manipulation and study of glucose metabolism. These results are important for selecting inbred mice to study glucose metabolism and for interpreting and designing experiments.
                Bookmark

                Author and article information

                Journal
                Diabetes
                Diabetes
                diabetes
                diabetes
                Diabetes
                Diabetes
                American Diabetes Association
                0012-1797
                1939-327X
                December 2013
                16 November 2013
                : 62
                : 12
                : 4154-4164
                Affiliations
                [1] 1Department of Molecular Physiology and Biophysics, Vanderbilt University Medical Center, Nashville, Tennessee
                [2] 2Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
                [3] 3Department of Cell and Developmental Biology and Vanderbilt University Program in Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee
                [4] 4Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, Tennessee
                Author notes
                Corresponding author: Alvin C. Powers, al.powers@ 123456vanderbilt.edu .

                R.B.R. and M.B. contributed equally to this article.

                Article
                0071
                10.2337/db13-0071
                3837071
                23884891
                698419c3-0cdb-4cfe-a9ba-cc87466062be
                © 2013 by the American Diabetes Association.

                Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

                History
                : 15 January 2013
                : 19 July 2013
                Page count
                Pages: 11
                Categories
                Original Research
                Islet Studies

                Endocrinology & Diabetes
                Endocrinology & Diabetes

                Comments

                Comment on this article