20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perfect timing: circadian rhythms, sleep, and immunity — an NIH workshop summary

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Recent discoveries demonstrate a critical role for circadian rhythms and sleep in immune system homeostasis. Both innate and adaptive immune responses — ranging from leukocyte mobilization, trafficking, and chemotaxis to cytokine release and T cell differentiation —are mediated in a time of day–dependent manner. The National Institutes of Health (NIH) recently sponsored an interdisciplinary workshop, “Sleep Insufficiency, Circadian Misalignment, and the Immune Response,” to highlight new research linking sleep and circadian biology to immune function and to identify areas of high translational potential. This Review summarizes topics discussed and highlights immediate opportunities for delineating clinically relevant connections among biological rhythms, sleep, and immune regulation.

          Related collections

          Most cited references91

          • Record: found
          • Abstract: found
          • Article: not found

          T helper 17 lineage differentiation is programmed by orphan nuclear receptors ROR alpha and ROR gamma.

          T cell functional differentiation is mediated by lineage-specific transcription factors. T helper 17 (Th17) has been recently identified as a distinct Th lineage mediating tissue inflammation. Retinoic acid receptor-related orphan receptor gamma (ROR gamma) was shown to regulate Th17 differentiation; ROR gamma deficiency, however, did not completely abolish Th17 cytokine expression. Here, we report Th17 cells highly expressed another related nuclear receptor, ROR alpha, induced by transforming growth factor-beta and interleukin-6 (IL-6), which is dependent on signal transducer and activator of transcription 3. Overexpression of ROR alpha promoted Th17 differentiation, possibly through the conserved noncoding sequence 2 in Il17-Il17f locus. ROR alpha deficiency resulted in reduced IL-17 expression in vitro and in vivo. Furthermore, ROR alpha and ROR gamma coexpression synergistically led to greater Th17 differentiation. Double deficiencies in ROR alpha and ROR gamma globally impaired Th17 generation and completely protected mice against experimental autoimmune encephalomyelitis. Therefore, Th17 differentiation is directed by two lineage-specific nuclear receptors, ROR alpha and ROR gamma.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The meter of metabolism.

            The circadian system orchestrates the temporal organization of many aspects of physiology, including metabolism, in synchrony with the 24 hr rotation of the Earth. Like the metabolic system, the circadian system is a complex feedback network that involves interactions between the central nervous system and peripheral tissues. Emerging evidence suggests that circadian regulation is intimately linked to metabolic homeostasis and that dysregulation of circadian rhythms can contribute to disease. Conversely, metabolic signals also feed back into the circadian system, modulating circadian gene expression and behavior. Here, we review the relationship between the circadian and metabolic systems and the implications for cardiovascular disease, obesity, and diabetes.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Clocking in to immunity

                Bookmark

                Author and article information

                Journal
                JCI Insight
                American Society for Clinical Investigation
                2379-3708
                January 16 2020
                January 16 2020
                January 16 2020
                January 16 2020
                : 5
                : 1
                Article
                10.1172/jci.insight.131487
                7030790
                31941836
                6993021d-bad3-4b4a-9773-c13ede6e689e
                © 2020
                History

                Comments

                Comment on this article