80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validity of the Global Physical Activity Questionnaire (GPAQ) in assessing levels and change in moderate-vigorous physical activity and sedentary behaviour

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Feasible, cost-effective instruments are required for the surveillance of moderate-to-vigorous physical activity (MVPA) and sedentary behaviour (SB) and to assess the effects of interventions. However, the evidence base for the validity and reliability of the World Health Organisation-endorsed Global Physical Activity Questionnaire (GPAQ) is limited. We aimed to assess the validity of the GPAQ, compared to accelerometer data in measuring and assessing change in MVPA and SB.

          Methods

          Participants (n = 101) were selected randomly from an on-going research study, stratified by level of physical activity (low, moderate or highly active, based on the GPAQ) and sex. Participants wore an accelerometer (Actigraph GT3X) for seven days and completed a GPAQ on Day 7. This protocol was repeated for a random sub-sample at a second time point, 3–6 months later. Analysis involved Wilcoxon-signed rank tests for differences in measures, Bland-Altman analysis for the agreement between measures for median MVPA and SB mins/day, and Spearman’s rho coefficient for criterion validity and extent of change.

          Results

          95 participants completed baseline measurements (44 females, 51 males; mean age 44 years, (SD 14); measurements of change were calculated for 41 (21 females, 20 males; mean age 46 years, (SD 14). There was moderate agreement between GPAQ and accelerometer for MVPA mins/day (r = 0.48) and poor agreement for SB (r = 0.19). The absolute mean difference (self-report minus accelerometer) for MVPA was −0.8 mins/day and 348.7 mins/day for SB; and negative bias was found to exist, with those people who were more physically active over-reporting their level of MVPA: those who were more sedentary were less likely to under-report their level of SB. Results for agreement in change over time showed moderate correlation (r = 0.52, p = 0.12) for MVPA and poor correlation for SB (r = −0.024, p = 0.916).

          Conclusions

          Levels of agreement with objective measurements indicate the GPAQ is a valid measure of MVPA and change in MVPA but is a less valid measure of current levels and change in SB. Thus, GPAQ appears to be an appropriate measure for assessing the effectiveness of interventions to promote MVPA.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: found
          • Article: not found

          Statistical methods for assessing agreement between two methods of clinical measurement.

          In clinical measurement comparison of a new measurement technique with an established one is often needed to see whether they agree sufficiently for the new to replace the old. Such investigations are often analysed inappropriately, notably by using correlation coefficients. The use of correlation is misleading. An alternative approach, based on graphical techniques and simple calculations, is described, together with the relation between this analysis and the assessment of repeatability.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Measuring agreement in method comparison studies.

            Agreement between two methods of clinical measurement can be quantified using the differences between observations made using the two methods on the same subjects. The 95% limits of agreement, estimated by mean difference +/- 1.96 standard deviation of the differences, provide an interval within which 95% of differences between measurements by the two methods are expected to lie. We describe how graphical methods can be used to investigate the assumptions of the method and we also give confidence intervals. We extend the basic approach to data where there is a relationship between difference and magnitude, both with a simple logarithmic transformation approach and a new, more general, regression approach. We discuss the importance of the repeatability of each method separately and compare an estimate of this to the limits of agreement. We extend the limits of agreement approach to data with repeated measurements, proposing new estimates for equal numbers of replicates by each method on each subject, for unequal numbers of replicates, and for replicated data collected in pairs, where the underlying value of the quantity being measured is changing. Finally, we describe a nonparametric approach to comparing methods.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Calibration of the Computer Science and Applications, Inc. accelerometer.

              We established accelerometer count ranges for the Computer Science and Applications, Inc. (CSA) activity monitor corresponding to commonly employed MET categories. Data were obtained from 50 adults (25 males, 25 females) during treadmill exercise at three different speeds (4.8, 6.4, and 9.7 km x h(-1)). Activity counts and steady-state oxygen consumption were highly correlated (r = 0.88), and count ranges corresponding to light, moderate, hard, and very hard intensity levels were or = 9499 cnts x min(-1), respectively. A model to predict energy expenditure from activity counts and body mass was developed using data from a random sample of 35 subjects (r2 = 0.82, SEE = 1.40 kcal x min(-1)). Cross validation with data from the remaining 15 subjects revealed no significant differences between actual and predicted energy expenditure at any treadmill speed (SEE = 0.50-1.40 kcal x min(-1)). These data provide a template on which patterns of activity can be classified into intensity levels using the CSA accelerometer.
                Bookmark

                Author and article information

                Contributors
                claire.cleland@glasgow.ac.uk
                ruth.hunter@qub.ac.uk
                f.kee@qub.ac.uk
                m.cupples@qub.ac.uk
                jsallis@ucsd.edu
                m.tully@qub.ac.uk
                Journal
                BMC Public Health
                BMC Public Health
                BMC Public Health
                BioMed Central (London )
                1471-2458
                10 December 2014
                2014
                : 14
                : 1
                Affiliations
                [ ]UKCRC Centre of Excellence for Public Health (NI), Centre for Public Health, School of Dentistry, Medicine and Biomedical Sciences, Queen’s University Belfast, Clinical Sciences Block B, Royal Victoria Hospital, Grosvenor Road, Belfast, BT12 6BJ Northern Ireland
                [ ]MRC/CSO Social and Public Health Sciences Unit, University of Glasgow, Top floor, 200, Renfield Street, Glasgow, G2 3QB Scotland
                [ ]Department of General Practice and Primary Care, School of Dentistry, Medicine and Biomedical Sciences, Queen’s University Belfast, 1, Dunluce Avenue, Belfast, BT9 7HR Northern Ireland
                [ ]Department of Family and Preventive Medicine, University of California, San Diego, USA
                Article
                7444
                10.1186/1471-2458-14-1255
                4295403
                25492375
                6997e28f-30a3-41c7-a9ba-9492fbd8c829
                © Cleland et al.; licensee BioMed Central. 2014

                This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                Categories
                Research Article
                Custom metadata
                © The Author(s) 2014

                Public health
                gpaq,validation,measurement,physical activity,accelerometer,sedentary behaviour
                Public health
                gpaq, validation, measurement, physical activity, accelerometer, sedentary behaviour

                Comments

                Comment on this article