9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transcriptome analysis reveals autophagy as regulator of TGFβ/Smad-induced fibrogenesis in trabecular meshwork cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The trabecular meshwork (TM) is a specialized ocular tissue, which is responsible, together with the Schlemm’s canal (SC), for maintaining appropriate levels of intraocular pressure. Dysfunction of these tissues leads to ocular hypertension and increases the risk for developing glaucoma. Previous work by our laboratory revealed dysregulated autophagy in aging and in glaucomatous TM cells. In order to gain more insight in the role of autophagy in the TM pathophysiology, we have conducted transcriptome and functional network analyses of TM primary cells with silenced expression of the autophagy genes Atg5 and Atg7. Atg5/7-deficient TM cells showed changes in transcript levels of several fibrotic genes, including TGFβ2, BAMBI, and SMA. Furthermore, genetic and pharmacological inhibition of autophagy was associated with a parallel reduction in TGFβ-induced fibrosis, caused by a BAMBI-mediated reduced activation of Smad2/3 signaling in autophagy-deficient cells. At the same time, TGFβ treatment led to Smad2/3-dependent dysregulation of autophagy in TM cells, characterized by increased LC3-II levels and autophagic vacuoles content. Together, our results indicate a cross-talk between autophagy and TGFβ signaling in TM cells.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: not found

          The Atg5 Atg12 conjugate associates with innate antiviral immune responses.

          Autophagy is an essential process for physiological homeostasis, but its role in viral infection is only beginning to be elucidated. We show here that the Atg5-Atg12 conjugate, a key regulator of the autophagic process, plays an important role in innate antiviral immune responses. Atg5-deficient mouse embryonic fibroblasts (MEFs) were resistant to vesicular stomatitis virus replication, which was largely due to hyperproduction of type I interferons in response to immunostimulatory RNA (isRNA), such as virus-derived, double-stranded, or 5'-phosphorylated RNA. Similar hyperresponse to isRNA was also observed in Atg7-deficient MEFs, in which Atg5-Atg12 conjugation is impaired. Overexpression of Atg5 or Atg12 resulted in Atg5-Atg12 conjugate formation and suppression of isRNA-mediated signaling. Molecular interaction studies indicated that the Atg5-Atg12 conjugate negatively regulates the type I IFN production pathway by direct association with the retinoic acid-inducible gene I (RIG-I) and IFN-beta promoter stimulator 1 (IPS-1) through the caspase recruitment domains (CARDs). Thus, in contrast to its role in promoting the bactericidal process, a component of the autophagic machinery appears to block innate antiviral immune responses, thereby contributing to RNA virus replication in host cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Autophagy in Idiopathic Pulmonary Fibrosis

            Background Autophagy is a basic cellular homeostatic process important to cell fate decisions under conditions of stress. Dysregulation of autophagy impacts numerous human diseases including cancer and chronic obstructive lung disease. This study investigates the role of autophagy in idiopathic pulmonary fibrosis. Methods Human lung tissues from patients with IPF were analyzed for autophagy markers and modulating proteins using western blotting, confocal microscopy and transmission electron microscopy. To study the effects of TGF-β1 on autophagy, human lung fibroblasts were monitored by fluorescence microscopy and western blotting. In vivo experiments were done using the bleomycin-induced fibrosis mouse model. Results Lung tissues from IPF patients demonstrate evidence of decreased autophagic activity as assessed by LC3, p62 protein expression and immunofluorescence, and numbers of autophagosomes. TGF-β1 inhibits autophagy in fibroblasts in vitro at least in part via activation of mTORC1; expression of TIGAR is also increased in response to TGF-β1. In the bleomycin model of pulmonary fibrosis, rapamycin treatment is antifibrotic, and rapamycin also decreases expression of á-smooth muscle actin and fibronectin by fibroblasts in vitro. Inhibition of key regulators of autophagy, LC3 and beclin-1, leads to the opposite effect on fibroblast expression of á-smooth muscle actin and fibronectin. Conclusion Autophagy is not induced in pulmonary fibrosis despite activation of pathways known to promote autophagy. Impairment of autophagy by TGF-β1 may represent a mechanism for the promotion of fibrogenesis in IPF.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Autophagy is activated by TGF-beta and potentiates TGF-beta-mediated growth inhibition in human hepatocellular carcinoma cells.

              Transforming growth factor-beta (TGF-beta) is a multifunctional cytokine that regulates cell growth, differentiation, and apoptosis of various types of cells. Autophagy is emerging as a critical response of normal and cancer cells to environmental changes, but the relationship between TGF-beta signaling and autophagy has been poorly understood. Here, we showed that TGF-beta activates autophagy in human hepatocellular carcinoma cell lines. TGF-beta induced accumulation of autophagosomes and conversion of microtubule-associated protein 1 light chain 3 and enhanced the degradation rate of long-lived proteins. TGF-beta increased the mRNA expression levels of BECLIN1, ATG5, ATG7, and death-associated protein kinase (DAPK). Knockdown of Smad2/3, Smad4, or DAPK, or inhibition of c-Jun NH(2)-terminal kinase, attenuated TGF-beta-induced autophagy, indicating the involvement of both Smad and non-Smad pathway(s). TGF-beta activated autophagy earlier than execution of apoptosis (6-12 versus 48 h), and reduction of autophagy genes by small interfering RNA attenuated TGF-beta-mediated growth inhibition and induction of proapoptotic genes Bim and Bmf, suggesting the contribution of autophagy pathway to the growth-inhibitory effect of TGF-beta. Additionally, TGF-beta also induced autophagy in some mammary carcinoma cells, including MDA-MB-231 cells. These findings show that TGF-beta signaling pathway activates autophagy in certain human cancer cells and that induction of autophagy is a novel aspect of biological functions of TGF-beta.
                Bookmark

                Author and article information

                Contributors
                paloma.liton@dm.duke.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                6 November 2019
                6 November 2019
                2019
                : 9
                : 16092
                Affiliations
                ISNI 0000 0004 1936 7961, GRID grid.26009.3d, Duke University, Department of Ophthalmology, ; Durham, NC USA
                Article
                52627
                10.1038/s41598-019-52627-2
                6834604
                31695131
                69a4561d-f253-4c0f-ac1f-b4d2d48f4e19
                © The Author(s) 2019

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 16 May 2019
                : 18 October 2019
                Categories
                Article
                Custom metadata
                © The Author(s) 2019

                Uncategorized
                macroautophagy,extracellular signalling molecules
                Uncategorized
                macroautophagy, extracellular signalling molecules

                Comments

                Comment on this article