32
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Crossover from adiabatic to sudden interaction quenches in the Hubbard model: Prethermalization and nonequilibrium dynamics

      Preprint
      ,

      Read this article at

      ScienceOpenPublisherArXiv
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The recent experimental implementation of condensed matter models in optical lattices has motivated research on their nonequilibrium behavior. Predictions on the dynamics of superconductors following a sudden quench of the pairing interaction have been made based on the effective BCS Hamiltonian; however, their experimental verification requires the preparation of a suitable excited state of the Hubbard model along a twofold constraint: (i) a sufficiently nonadiabatic ramping scheme is essential to excite the nonequilibrium dynamics, and (ii) overheating beyond the critical temperature of superconductivity must be avoided. For commonly discussed interaction ramps there is no clear separation of the corresponding energy scales. Here we show that the matching of both conditions is simplified by the intrinsic relaxation behavior of ultracold fermionic systems: For the particular example of a linear ramp we examine the transient regime of prethermalization [M. Moeckel and S. Kehrein, Phys. Rev. Lett. 100, 175702 (2008)] under the crossover from sudden to adiabatic switching using Keldysh perturbation theory. A real-time analysis of the momentum distribution exhibits a temporal separation of an early energy relaxation and its later thermalization by scattering events. For long but finite ramping times this separation can be large. In the prethermalization regime the momentum distribution resembles a zero temperature Fermi liquid as the energy inserted by the ramp remains located in high energy modes. Thus ultracold fermions prove robust to heating which simplifies the observation of nonequilibrium BCS dynamics in optical lattices.

          Related collections

          Most cited references20

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Relaxation in a Completely Integrable Many-Body Quantum System: An Ab Initio Study of the Dynamics of the Highly Excited States of Lattice Hard-Core Bosons

          In this Letter we pose the question of whether a many-body quantum system with a full set of conserved quantities can relax to an equilibrium state, and, if it can, what the properties of such state are. We confirm the relaxation hypothesis through a thorough ab initio numerical investigation of the dynamics of hard-core bosons on a one-dimensional lattice. Further, a natural extension of the Gibbs ensemble to integrable systems results in a theory that is able to predict the mean values of physical observables after relaxation. Finally, we show that our generalized equilibrium carries more memory of the initial conditions than the usual thermodynamic one. This effect may have many experimental consequences, some of which having already been observed in the recent experiment on the non-equilibrium dynamics of one-dimensional hard-core bosons in a harmonic potential [T. Kinoshita, T. Wenger, D. S. Weiss, Nature (London) 440, 900 (2006)].
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Interaction Quench in the Hubbard model

            Motivated by recent experiments in ultracold atomic gases that explore the nonequilibrium dynamics of interacting quantum many-body systems, we investigate the opposite limit of Landau's Fermi liquid paradigm: We study a Hubbard model with a sudden interaction quench, that is the interaction is switched on at time t=0. Using the flow equation method, we are able to study the real time dynamics for weak interaction U in a systematic expansion and find three clearly separated time regimes: i) An initial buildup of correlations where the quasiparticles are formed. ii) An intermediate quasi-steady regime resembling a zero temperature Fermi liquid with a nonequilibrium quasiparticle distribution function. iii) The long time limit described by a quantum Boltzmann equation leading to thermalization with a temperature T proportional to U.
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Hard-core bosons on optical superlattices: Dynamics and relaxation in the superfluid and insulating regimes

              We study the ground-state properties and nonequilibrium dynamics of hard-core bosons confined in one-dimensional lattices in the presence of an additional periodic potential (superlattice) and a harmonic trap. The dynamics is analyzed after a sudden switch-on or switch-off of the superlattice potential, which can bring the system into insulating or superfluid phases, respectively. A collapse and revival of the zero-momentum peak can be seen in the first case. We study in detail the relaxation of these integrable systems towards equilibrium. We show how after relaxation time averages of physical observables, like the momentum distribution function, can be predicted by means of a generalization of the Gibbs distribution.

                Author and article information

                Journal
                04 November 2009
                2010-06-03
                Article
                10.1088/1367-2630/12/5/055016
                0911.0875
                69a8237f-2939-46c3-b6ca-7f144eb50da3

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                New J. Phys. 12, 055016 (2010)
                27 pages, 8 figures Second version with small modifications in section 7
                cond-mat.quant-gas cond-mat.str-el cond-mat.supr-con

                Comments

                Comment on this article

                Related Documents Log