13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fluorescence and Electron Microscopy to Visualize the Intracellular Fate of Nanoparticles for Drug Delivery

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In order to design valid protocols for drug release via nanocarriers, it is essential to know the mechanisms of cell internalization, the interactions with organelles, and the intra-cellular permanence and degradation of nanoparticles (NPs) as well as the possible cell alteration or damage induced. In the present study, the intracellular fate of liposomes, polymeric NPs and mesoporous silica NPs (MSN) has been investigated in an in vitro cell system by fluorescence and transmission electron microscopy. The tested nanocarriers proved to be characterized by specific interactions with the cell: liposomes enter the cells probably by fusion with the plasma membrane and undergo rapid cytoplasmic degradation; polymeric NPs are internalized by endocytosis, occur in the cytoplasm both enclosed in endosomes and free in the cytosol, and then undergo massive degradation by lysosome action; MSN are internalized by both endocytosis and phagocytosis, and persist in the cytoplasm enclosed in vacuoles. No one of the tested nanocarriers was found to enter the nucleus. The exposure to the different nanocarriers did not increase cell death; only liposomes induced a reduction of cell population after long incubation times, probably due to cell overloading. No subcellular damage was observed to be induced by polymeric NPs and MSN, whereas transmission electron microscopy revealed cytoplasm alterations in liposome-treated cells. This important information on the structural and functional relationships between nanocarriers designed for drug delivery and cultured cells further proves the crucial role of microscopy techniques in nanotechnology.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Endosomal escape pathways for delivery of biologicals.

          Despite continuous improvements in delivery systems, the development of methods for efficient and specific delivery of targeted therapeutic agents still remains an issue in biological treatments such as protein and gene therapy. The endocytic pathway is the major uptake mechanism of cells and any biological agents, such as DNA, siRNA and proteins. These agents become entrapped in endosomes and are degraded by specific enzymes in the lysosome. Thus, a limiting step in achieving an effective biological based therapy is to facilitate the endosomal escape and ensure cytosolic delivery of the therapeutics. Bacteria and viruses are pathogens which use different mechanisms to penetrate the membranes of their target cells and escape the endosomal pathway. Different mechanisms such as pore formation in the endosomal membrane, pH-buffering effect of protonable groups and fusion into the lipid bilayer of endosomes have been proposed to facilitate the endosomal escape. Several viral and bacterial proteins have been identified that are involved in this process. In addition, chemical agents and photochemical methods to rupture the endosomal membrane have been described. New synthetic biomimetic peptides and polymers with high efficacy in facilitating the endosomal escape, low pathogenicity and toxicity have been developed. Each strategy has different characteristics and challenges for designing the best agents and techniques to facilitate the endosomal escape are ongoing. In this review, several mechanisms and agents which are involved in endosomal escape are introduced. Copyright © 2010 Elsevier B.V. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Cellular uptake, intracellular trafficking, and cytotoxicity of nanomaterials.

            The interactions of nanoparticles with the soft surfaces of biological systems like cells play key roles in executing their biomedical functions and in toxicity. The discovery or design of new biomedical functions, or the prediction of the toxicological consequences of nanoparticles in vivo, first require knowledge of the interplay processes of the nanoparticles with the target cells. This article focusses on the cellular uptake, location and translocation, and any biological consequences, such as cytotoxicity, of the most widely studied and used nanoparticles, such as carbon-based nanoparticles, metallic nanoparticles, and quantum dots. The relevance of the size and shape, composition, charge, and surface chemistry of the nanoparticles in cells is considered. The intracellular uptake pathways of the nanoparticles and the cellular responses, with potential signaling pathways activated by nanoparticle interactions, are also discussed. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Rapid endo-lysosomal escape of poly(DL-lactide-co-glycolide) nanoparticles: implications for drug and gene delivery.

              The endo-lysosomal escape of drug carriers is crucial to enhancing the efficacy of their macromolecular payload, especially the payloads that are susceptible to lysosomal degradation. Current vectors that enable the endo-lysosomal escape of macromolecules such as DNA are limited by their toxicity and by their ability to carry only limited classes of therapeutic agents. In this paper, we report the rapid (<10 min) endo-lysosomal escape of biodegradable nanoparticles (NPs) formulated from the copolymers of poly(DL-lactide-co-glycolide) (PLGA). The mechanism of rapid escape is by selective reversal of the surface charge of NPs (from anionic to cationic) in the acidic endo-lysosomal compartment, which causes the NPs to interact with the endo-lysosomal membrane and escape into the cytosol. PLGA NPs are able to deliver a variety of therapeutic agents, including macromolecules such as DNA and low molecular weight drugs such as dexamethasone, intracellularly at a slow rate, which results in a sustained therapeutic effect. PLGA has a number of advantages over other polymers used in drug and gene delivery including biodegradability, biocompatibility, and approval for human use granted by the U.S. Food and Drug Administration. Hence PLGA is well suited for sustained intracellular delivery of macromolecules.
                Bookmark

                Author and article information

                Journal
                Eur J Histochem
                Eur J Histochem
                EJH
                European Journal of Histochemistry : EJH
                PAGEPress Publications, Pavia, Italy
                1121-760X
                2038-8306
                14 April 2016
                11 April 2016
                : 60
                : 2
                : 2640
                Affiliations
                [1 ]Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona , Italy
                [2 ]Department of Drug Science and Technology, University of Turin , Italy
                [3 ]Department of Chemistry and NIS Research Centre, University of Turin , Italy
                Author notes
                Department of Neurosciences, Biomedicine and Movement Sciences, Anatomy and Histology Section, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy. +39.045.8027155 - 39.045.8027163. manuela.malatesta@ 123456univr.it
                Article
                10.4081/ejh.2016.2640
                4933830
                27349319
                69b0a04f-2b8f-4942-b2e4-b5f1fdb51f3b
                ©Copyright M. Costanzo et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 01 March 2016
                : 04 April 2016
                Page count
                Figures: 7, Tables: 0, Equations: 0, References: 43, Pages: 9
                Categories
                Original Paper

                Clinical chemistry
                liposomes,mesoporous silica nanoparticles,polymeric nanoparticles,fluorescence microscopy,electron microscopy

                Comments

                Comment on this article