11
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Identification and Analysis of Two Novel Sites of Rat GnRH Receptor Gene Promoter Activity: The Pineal Gland and Retina

      research-article

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background and Aims: In mammals, activation of pituitary GnRH receptor (GnRHR) by hypothalamic GnRH increases the synthesis and secretion of LH and FSH, which, in turn, regulate gonadal functions. However, GnRHR gene (Gnrhr) expression is not restricted to the pituitary. Methods: To gain insight into the extrapituitary expression of Gnrhr, a transgenic mouse model that expresses the human placental alkaline phosphatase reporter gene driven by the rat Gnrhr promoter was created. Results: This study shows that the rat Gnrhr promoter is operative in two functionally related organs, the pineal gland, as early as embryonic day (E) 13.5, and the retina where activity was only detected at E17.5. Accordingly, Gnrhr mRNA were present in both tissues. Transcription factors known to regulate Gnrhr promoter activity such as the LIM homeodomain factors LHX3 and ISL1 were also detected in the retina. Furthermore, transient transfection studies in CHO and gonadotrope cells revealed that OTX2, a major transcription factor in both pineal and retina cell differentiation, is able to activate the Gnrhr promoter together with either CREB or PROP1, depending on the cell context. Conclusion: Rather than using alternate promoters, Gnrhr expression is directed to diverse cell lineages through specific associations of transcription factors acting on distinct response elements along the same promoter. These data open new avenues regarding GnRH-mediated control of seasonal and circadian rhythms in reproductive physiology.

          Related collections

          Most cited references51

          • Record: found
          • Abstract: found
          • Article: not found

          Pax6 is required for the multipotent state of retinal progenitor cells.

          The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Otx2 homeobox gene controls retinal photoreceptor cell fate and pineal gland development.

            Understanding the molecular mechanisms by which distinct cell fate is determined during organogenesis is a central issue in development and disease. Here, using conditional gene ablation in mice, we show that the transcription factor Otx2 is essential for retinal photoreceptor cell fate determination and development of the pineal gland. Otx2-deficiency converted differentiating photoreceptor cells to amacrine-like neurons and led to a total lack of pinealocytes in the pineal gland. We also found that Otx2 transactivates the cone-rod homeobox gene Crx, which is required for terminal differentiation and maintenance of photoreceptor cells. Furthermore, retroviral gene transfer of Otx2 steers retinal progenitor cells toward becoming photoreceptors. Thus, Otx2 is a key regulatory gene for the cell fate determination of retinal photoreceptor cells. Our results reveal the key molecular steps required for photoreceptor cell-fate determination and pinealocyte development.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters.

              Melatonin, the major hormone produced by the pineal gland, displays characteristic daily and seasonal patterns of secretion. These robust and predictable rhythms in circulating melatonin are strong synchronizers for the expression of numerous physiological processes in photoperiodic species. In mammals, the nighttime production of melatonin is mainly driven by the circadian clock, situated in the suprachiasmatic nucleus of the hypothalamus, which controls the release of norepinephrine from the dense pineal sympathetic afferents. The pivotal role of norepinephrine in the nocturnal stimulation of melatonin synthesis has been extensively dissected at the cellular and molecular levels. Besides the noradrenergic input, the presence of numerous other transmitters originating from various sources has been reported in the pineal gland. Many of these are neuropeptides and appear to contribute to the regulation of melatonin synthesis by modulating the effects of norepinephrine on pineal biochemistry. The aim of this review is firstly to update our knowledge of the cellular and molecular events underlying the noradrenergic control of melatonin synthesis; and secondly to gather together early and recent data on the effects of the nonadrenergic transmitters on modulation of melatonin synthesis. This information reveals the variety of inputs that can be integrated by the pineal gland; what elements are crucial to deliver the very precise timing information to the organism. This also clarifies the role of these various inputs in the seasonal variation of melatonin synthesis and their subsequent physiological function.
                Bookmark

                Author and article information

                Journal
                NEN
                Neuroendocrinology
                10.1159/issn.0028-3835
                Neuroendocrinology
                S. Karger AG
                0028-3835
                1423-0194
                2013
                March 2013
                25 August 2012
                : 97
                : 2
                : 115-131
                Affiliations
                aUniversité Paris Diderot Paris 7, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Physiologie de l'Axe Gonadotrope, and bINSERM UMRS 872, Centre de Recherche des Cordeliers, Paris, France
                Author notes
                *Jean-Noël Laverrière, Université Paris Diderot Paris 7, EAC CNRS 4413, Biologie Fonctionnelle et Adaptative, Physiologie de l'Axe Gonadotrope, Bâtiment Buffon, case courrier 7007, 4, rue MA Lagroua Weill-Hallé, FR-75205 Paris Cedex 13 (France), Tel. +33 1 57 27 84 06, E-Mail jean-noel.laverriere@univ-paris-diderot.fr
                Article
                337661 Neuroendocrinology 2013;97:115-131
                10.1159/000337661
                22414758
                69bb119c-dafc-4b13-9b30-f0888bb09559
                © 2012 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                History
                : 01 August 2011
                : 28 February 2012
                Page count
                Figures: 8, Tables: 2, Pages: 17
                Categories
                Original Paper

                Endocrinology & Diabetes,Neurology,Nutrition & Dietetics,Sexual medicine,Internal medicine,Pharmacology & Pharmaceutical medicine
                Retina,Transcription factors,Transgenesis,GnRH receptor,hPLAP,OTX2,Pineal gland,Pituitary,Gonadotrope

                Comments

                Comment on this article