2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Molecular Modeling Studies of 11β-Hydroxysteroid Dehydrogenase Type 1 Inhibitors through Receptor-Based 3D-QSAR and Molecular Dynamics Simulations

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          11β-Hydroxysteroid dehydrogenase type 1 (11β-HSD1) is a potential target for the treatment of numerous human disorders, such as diabetes, obesity, and metabolic syndrome. In this work, molecular modeling studies combining molecular docking, 3D-QSAR, MESP, MD simulations and free energy calculations were performed on pyridine amides and 1,2,4-triazolopyridines as 11β-HSD1 inhibitors to explore structure-activity relationships and structural requirement for the inhibitory activity. 3D-QSAR models, including CoMFA and CoMSIA, were developed from the conformations obtained by docking strategy. The derived pharmacophoric features were further supported by MESP and Mulliken charge analyses using density functional theory. In addition, MD simulations and free energy calculations were employed to determine the detailed binding process and to compare the binding modes of inhibitors with different bioactivities. The binding free energies calculated by MM/PBSA showed a good correlation with the experimental biological activities. Free energy analyses and per-residue energy decomposition indicated the van der Waals interaction would be the major driving force for the interactions between an inhibitor and 11β-HSD1. These unified results may provide that hydrogen bond interactions with Ser170 and Tyr183 are favorable for enhancing activity. Thr124, Ser170, Tyr177, Tyr183, Val227, and Val231 are the key amino acid residues in the binding pocket. The obtained results are expected to be valuable for the rational design of novel potent 11β-HSD1 inhibitors.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          MMPBSA.py: An Efficient Program for End-State Free Energy Calculations.

          MM-PBSA is a post-processing end-state method to calculate free energies of molecules in solution. MMPBSA.py is a program written in Python for streamlining end-state free energy calculations using ensembles derived from molecular dynamics (MD) or Monte Carlo (MC) simulations. Several implicit solvation models are available with MMPBSA.py, including the Poisson-Boltzmann Model, the Generalized Born Model, and the Reference Interaction Site Model. Vibrational frequencies may be calculated using normal mode or quasi-harmonic analysis to approximate the solute entropy. Specific interactions can also be dissected using free energy decomposition or alanine scanning. A parallel implementation significantly speeds up the calculation by dividing frames evenly across available processors. MMPBSA.py is an efficient, user-friendly program with the flexibility to accommodate the needs of users performing end-state free energy calculations. The source code can be downloaded at http://ambermd.org/ with AmberTools, released under the GNU General Public License.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model.

            The conductor-like solvation model, as developed in the framework of the polarizable continuum model (PCM), has been reformulated and newly implemented in order to compute energies, geometric structures, harmonic frequencies, and electronic properties in solution for any chemical system that can be studied in vacuo. Particular attention is devoted to large systems requiring suitable iterative algorithms to compute the solvation charges: the fast multipole method (FMM) has been extensively used to ensure a linear scaling of the computational times with the size of the solute. A number of test applications are presented to evaluate the performances of the method. Copyright 2003 Wiley Periodicals, Inc. J Comput Chem 24: 669-681, 2003
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Optimization of parameters for semiempirical methods I. Method

                Bookmark

                Author and article information

                Contributors
                Role: Academic Editor
                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                19 September 2016
                September 2016
                : 21
                : 9
                : 1222
                Affiliations
                [1 ]College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China; hyqian11119010@ 123456zju.edu.cn (H.Q.); 11319001@ 123456zju.edu.cn (Y.P.)
                [2 ]The Children’s Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China; xiaojiong@ 123456zju.edu.cn
                Author notes
                [* ]Correspondence: chjz@ 123456zju.edu.cn ; Tel./Fax: +86-571-8820-8659
                [†]

                These authors contributed equally to this work.

                Article
                molecules-21-01222
                10.3390/molecules21091222
                6274164
                27657020
                69be4ae4-8125-4a94-b355-6bff47063cb9
                © 2016 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 13 July 2016
                : 09 September 2016
                Categories
                Article

                11β-hsd1,3d-qsar,mesp,md simulations,binding free energy
                11β-hsd1, 3d-qsar, mesp, md simulations, binding free energy

                Comments

                Comment on this article