117
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Community Structure in Time-Dependent, Multiscale, and Multiplex Networks

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Network science is an interdisciplinary endeavor, with methods and applications drawn from across the natural, social, and information sciences. A prominent problem in network science is the algorithmic detection of tightly-connected groups of nodes known as communities. We developed a generalized framework of network quality functions that allowed us to study the community structure of arbitrary multislice networks, which are combinations of individual networks coupled through links that connect each node in one network slice to itself in other slices. This framework allows one to study community structure in a very general setting encompassing networks that evolve over time, have multiple types of links (multiplexity), and have multiple scales.

          Related collections

          Most cited references2

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Community structure in social and biological networks

          A number of recent studies have focused on the statistical properties of networked systems such as social networks and the World-Wide Web. Researchers have concentrated particularly on a few properties which seem to be common to many networks: the small-world property, power-law degree distributions, and network transitivity. In this paper, we highlight another property which is found in many networks, the property of community structure, in which network nodes are joined together in tightly-knit groups between which there are only looser connections. We propose a new method for detecting such communities, built around the idea of using centrality indices to find community boundaries. We test our method on computer generated and real-world graphs whose community structure is already known, and find that it detects this known structure with high sensitivity and reliability. We also apply the method to two networks whose community structure is not well-known - a collaboration network and a food web - and find that it detects significant and informative community divisions in both cases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Tracking evolving communities in large linked networks.

            We are interested in tracking changes in large-scale data by periodically creating an agglomerative clustering and examining the evolution of clusters (communities) over time. We examine a large real-world data set: the NEC CiteSeer database, a linked network of >250,000 papers. Tracking changes over time requires a clustering algorithm that produces clusters stable under small perturbations of the input data. However, small perturbations of the CiteSeer data lead to significant changes to most of the clusters. One reason for this is that the order in which papers within communities are combined is somewhat arbitrary. However, certain subsets of papers, called natural communities, correspond to real structure in the CiteSeer database and thus appear in any clustering. By identifying the subset of clusters that remain stable under multiple clustering runs, we get the set of natural communities that we can track over time. We demonstrate that such natural communities allow us to identify emerging communities and track temporal changes in the underlying structure of our network data.
              Bookmark

              Author and article information

              Journal
              09 November 2009
              2010-07-12
              Article
              10.1126/science.1184819
              0911.1824
              69d37e6c-ba1f-4a98-9dc4-188cdc6d7b1a

              http://arxiv.org/licenses/nonexclusive-distrib/1.0/

              History
              Custom metadata
              Science vol.328, 876-878 (2010)
              31 pages, 3 figures, 1 table. Includes main text and supporting material. This is the accepted version of the manuscript (the definitive version appeared in Science), with typographical corrections included here
              physics.data-an physics.soc-ph

              Comments

              Comment on this article