16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Gametophyte and embryonic ontogeny: understanding the reproductive calendar of Cypripedium japonicum Thunb. (Cypripedoideae, Orchidaceae), a lady’s slipper orchid endemic to East Asia

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The genus Cypripedium L. is one of the five genera of the subfamily Cypripedioideae, members of which are commonly known as lady’s slipper orchids. Cypripedium japonicum is a perennial herb native to East Asia, specifically China, Japan, and Korea. Due to its limited distribution, the species is included in the Endangered category of the IUCN Red List.

          Results

          We investigated gametophyte development, including complete embryogenesis, in C. japonicum. The complete reproductive cycle is presented based on our observations. Anther development begins under the soil, and meiosis of pollen mother cells begins 3 weeks before anthesis, possibly during early April. The megaspore mother cells develop just after pollination in early May and mature in mid–late June. The pattern of embryo sac formation is bisporic, and there are six nuclei: three forming the egg apparatus, two polar nuclei, and an antipodal cell in the mature embryo sac. Triple fertilization results in the endosperm nucleus, which degenerates when the proembryo reaches the eight-to-sixteen-cell stage.

          Conclusion

          Our overall comparisons of the features of gametophyte and embryo development in C. japonicum suggest that previous reports on the embryology of Cypripedium are not sufficient for characterization of the entire genus. Based on the available information, a reproductive calendar showing the key reproductive events leading to embryo formation has been prepared.

          Related collections

          Most cited references63

          • Record: found
          • Abstract: not found
          • Article: not found

          Variation in sexual reproduction in orchids and its evolutionary consequences: a spasmodic journey to diversification

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Fruit set, nectar reward, and rarity in the Orchidaceae.

            A review of comparative levels of reproductive success among nectariferous and nectarless orchids worldwide was compiled from a comprehensive survey of fruit set from 117 orchid species in the literature and from our own field studies. It confirms the hypothesis that nectariferous orchids are more successful in setting fruit than are nectarless species. Overall fruit set figures for nectarless and nectariferous orchids were 19.5 and 49.3% for North America, 27.7 and 63.1% for Europe, 41.4 and 74.4% for the temperate southern hemisphere, and 11.5 and 24.9% for the tropics, demonstrating that the dichotomy is consistent across all geographical areas. On average, the provision of nectar doubles the probability of fruit set in both temperate and tropical areas, but tropical orchids are remarkable in that all (whether nectarless or nectariferous, or terrestrial or epiphytic) display low fruit productivity (<50%). Fruiting failure in the tropics may be balanced by higher productivity per capsule, since tropical orchid fruits contain on average 150 times more seeds than temperate ones. Hybridization occurs more frequently among nectarless orchids in Britain and Europe than among nectariferous ones, and there is a significant positive association between orchid rarity and lack of nectar reward in the British Isles. Sexual reproduction in the Orchidaceae is predominantly pollinator dependent, but this can sometimes be successfully circumvented by asexual seed production (agamospermy) or, more frequently, by automatic self-pollination (autogamy). The proportion of highly successful nectarless orchids from all geographic areas is very low and comparable with that of orchids offering rewards other than nectar (∼14% of species in each case) emphasizing that high reproductive success is only associated with nectar reward (53% of species). It is suggested that the evolution of nectar production within the family has been the most frequent means of escaping the reproductive limitations of low pollinator visitation frequencies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Ovary and Gametophyte Development Are Coordinately Regulated by Auxin and Ethylene following Pollination.

              The differentiation and development of ovules in orchid flowers are pollination dependent. To define the developmental signals and timing of critical events associated with ovule differentiation, we have examined factors that regulate the initial events in megasporogenesis and female gametophyte development and characterized its progression toward maturity and fertilization. Two days after pollination, ovary wall epidermal cells begin to elongate and form hair cells; this is the earliest visible morphological change, and it occurs at least 3 days prior to pollen germination, indicating that signals associated with pollination itself trigger these early events. The effects of inhibitors of ethylene biosynthesis on early morphological changes indicated that ethylene, in the presence of auxin, is required to initiate ovary development and, indirectly, subsequent ovule differentiation. Surprisingly, pollen germination and growth were also strongly inhibited by inhibitors of ethylene biosynthesis, indicating that male gametophyte development is also regulated by ethylene. Detailed characterization of the development of both the female and male gametophyte in pollinated orchid flowers indicated that pollen tubes entered the ovary and grew along the ovary wall for 10 to 35 days, at which time growth was arrested. Approximately 40 days after pollination, coincident with ovule differentiation as indicated by the presence of a single archesporial cell, the direction of pollen tube growth became redirected toward the ovule, suggesting a chemical signaling between the developing ovule and male gametophyte. Taken together, these results indicate that both auxin and ethylene contribute to the regulation of both ovary and ovule development and to the coordination of development of male and female gametophytes.
                Bookmark

                Author and article information

                Contributors
                mjjeong121@korea.kr
                Journal
                BMC Plant Biol
                BMC Plant Biol
                BMC Plant Biology
                BioMed Central (London )
                1471-2229
                15 September 2020
                15 September 2020
                2020
                : 20
                : 426
                Affiliations
                [1 ]GRID grid.418977.4, ISNI 0000 0000 9151 8497, Division of Forest Biodiversity, , Korea National Arboretum, ; Pocheon, 11186 South Korea
                [2 ]GRID grid.418977.4, ISNI 0000 0000 9151 8497, Division of Plant Resources, , Korea National Arboretum, ; Yongmun, 12519 South Korea
                Author information
                http://orcid.org/0000-0002-2169-1280
                Article
                2589
                10.1186/s12870-020-02589-9
                7493375
                69d7903e-80be-488d-ad03-72246d64e82b
                © The Author(s) 2020

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                History
                : 21 April 2020
                : 10 August 2020
                Categories
                Research Article
                Custom metadata
                © The Author(s) 2020

                Plant science & Botany
                cypripedium japonicum,gametophyte development,embryology,reproductive calendar,endangered species

                Comments

                Comment on this article