6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Clinical Evaluation and Validation of the Dutch Crosslinking for Keratoconus Score

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This cohort study assesses and validates the Dutch Crosslinking for Keratoconus (DUCK) score, a novel clinical assessment tool for crosslinking treatment in patients with keratoconus. Can adhering to the Dutch Crosslinking for Keratoconus (DUCK) score improve clinical decision making in patients with progressive keratoconus? This cohort study of 504 eyes and 388 patients found that adhering to the DUCK score was associated with a reduction in the overall crosslinking treatment rate without increasing the risk of disease progression. This DUCK score may better identify eyes that were rightly withheld treatment and may prevent unnecessary exposure to treatment risks and improve overall effectiveness. Defining keratoconus progression is fundamental in clinical decision making because crosslinking treatments are indicated when the disease is considered progressive. Currently, there is no consensus which parameters should be used to define progression. To assess and validate a novel clinical scoring system as an easy-to-use assessment tool for crosslinking treatment in patients with keratoconus. Prospective cohort study at 2 academic treatment centers. Patients with keratoconus referred between January 1, 2012, and June 30, 2014, with 2-year follow-up were included. Analysis began March 2017. The Dutch Crosslinking for Keratoconus (DUCK) score is based on changes in 5 clinical parameters that are routinely assessed: age, visual acuity, refraction error, keratometry, and subjective patient experience. The DUCK score is derived by scoring 0 to 2 points per item, and cutoffs were determined by clinical experience. We compared the DUCK scores to the conventional 1.0-diopter increase in maximum keratometry criterion, within the last 12 months, in a longitudinal discovery and a validation cohort. Sensitivity analyses and intraitem correlations were performed. Overall treatment rate reduction and the duly withheld treatment rate. A total of 504 eyes of 388 patients were available for analysis on disease progression in the course of 12 and 24 months. Baseline patient characteristics of the discovery cohort and the validation cohort were comparable in terms of age (mean [SD], 26.8 [8.3] years vs 26.3 [9.1]), sex (216 of 332 [65%] vs 123 of 172 [72%] men), and maximum keratometry (mean [SD], 53.5 [7.1] vs 52.7 [6.3]). Adhering to the DUCK score, rather than maximum keratometry, was associated with a reduction in overall treatment rate by 23% (95% CI, 18%-30%), without increasing the risk of disease progression (ie, the rate of progression for both groups was equal; ±0%). The DUCK score appears to better identify eyes that were duly withheld treatment by 35% (95% CI, 22%-49%). These results provide validation of the DUCK score as a tool to determine whether a crosslinking treatment might be warranted. Compared with the conventional maximum keratometry criterion of more than 1.0 diopter, the DUCK score may better select patients who might benefit from crosslinking treatment. Potentially, it may prevent unnecessary treatments, reduce exposure to treatment risks, and improve the cost effectiveness of crosslinking.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Global consensus on keratoconus and ectatic diseases.

          Despite extensive knowledge regarding the diagnosis and management of keratoconus and ectatic corneal diseases, many controversies still exist. For that reason, there is a need for current guidelines for the diagnosis and management of these conditions. This project aimed to reach consensus of ophthalmology experts from around the world regarding keratoconus and ectatic diseases, focusing on their definition, concepts, clinical management, and surgical treatments. The Delphi method was followed with 3 questionnaire rounds and was complemented with a face-to-face meeting. Thirty-six panelists were involved and allocated to 1 of 3 panels: definition/diagnosis, nonsurgical management, or surgical treatment. The level of agreement considered for consensus was two thirds. Numerous agreements were generated in definitions, methods of diagnosing, and management of keratoconus and other ectatic diseases. Nonsurgical and surgical treatments for these conditions, including the use of corneal cross-linking and corneal transplantations, were presented in a stepwise approach. A flowchart describing a logical management sequence for keratoconus was created. This project resulted in definitions, statements, and recommendations for the diagnosis and management of keratoconus and other ectatic diseases. It also provides an insight into the current worldwide treatment of these conditions.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Riboflavin/ultraviolet-a–induced collagen crosslinking for the treatment of keratoconus

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A randomized, controlled trial of corneal collagen cross-linking in progressive keratoconus: three-year results.

              To report the refractive, topographic, and clinical outcomes 3 years after corneal collagen cross-linking (CXL) in eyes with progressive keratoconus. Prospective, randomized controlled trial. One hundred eyes with progressive keratoconus were randomized into the CXL treatment or control groups. Cross-linking was performed by instilling riboflavin 0.1% solution containing 20% dextran for 15 minutes before and during the 30 minutes of ultraviolet A irradiation (3 mW/cm(2)). Follow-up examinations were arranged at 3, 6, 12, 24, and 36 months. The primary outcome measure was the maximum simulated keratometry value (Kmax). Other outcome measures were uncorrected visual acuity (UCVA; measured in logarithm of the minimum angle of resolution [logMAR] units), best spectacle-corrected visual acuity (BSCVA; measured in logMAR units), sphere and cylinder on subjective refraction, spherical equivalent, minimum simulated keratometry value, corneal thickness at the thinnest point, endothelial cell density, and intraocular pressure. The results from 48 control and 46 treated eyes are reported. In control eyes, Kmax increased by a mean of 1.20±0.28 diopters (D), 1.70±0.36 D, and 1.75±0.38 D at 12, 24, and 36 months, respectively (all P <0.001). In treated eyes, Kmax flattened by -0.72±0.15 D, -0.96±0.16 D, and -1.03±0.19 D at 12, 24, and 36 months, respectively (all P <0.001). The mean change in UCVA in the control group was +0.10±0.04 logMAR (P = 0.034) at 36 months. In the treatment group, both UCVA (-0.15±0.06 logMAR; P = 0.009) and BSCVA (-0.09±0.03 logMAR; P = 0.006) improved at 36 months. There was a significant reduction in corneal thickness measured using computerized videokeratography in both groups at 36 months (control group: -17.01±3.63 μm, P <0.001; treatment group: -19.52±5.06 μm, P <0.001) that was not observed in the treatment group using the manual pachymeter (treatment group: +5.86±4.30 μm, P = 0.181). The manifest cylinder increased by 1.17±0.49 D (P = 0.020) in the control group at 36 months. There were 2 eyes with minor complications that did not affect the final visual acuity. At 36 months, there was a sustained improvement in Kmax, UCVA, and BSCVA after CXL, whereas eyes in the control group demonstrated further progression. Copyright © 2014 American Academy of Ophthalmology. Published by Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Journal
                JAMA Ophthalmology
                JAMA Ophthalmol
                American Medical Association (AMA)
                2168-6165
                June 01 2019
                June 01 2019
                : 137
                : 6
                : 610
                Affiliations
                [1 ]Department of Ophthalmology, University Medical Center Utrecht, Utrecht, the Netherlands
                [2 ]University Eye Clinic Maastricht, Maastricht University Medical Center, Maastricht, Limburg, the Netherlands
                Article
                10.1001/jamaophthalmol.2019.0415
                6567860
                30920597
                69dd0316-437e-4291-af42-0bf3038425cd
                © 2019
                History

                Comments

                Comment on this article