10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Changes in starch and inositol 1,4,5-trisphosphate levels and auxin transport are interrelated in graviresponding oat (Avena sativa) shoots.

      Plant, Cell & Environment
      Avena sativa, metabolism, physiology, Base Sequence, Biological Transport, DNA Primers, Gravitropism, Indoleacetic Acids, Inositol 1,4,5-Trisphosphate, Plant Shoots, Signal Transduction, Starch

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was conducted to unravel a mechanism for the gravitropic curvature response in oat (Avena sativa) shoot pulvini. For this purpose, we examined the downward movement of starch-filled chloroplast gravisensors, differential changes in inositol 1,4,5-trisphosphate (IP(3)) levels, transport of indole-3-acetic acid (IAA) and gravitropic curvature. Upon gravistimulation, the ratio for IAA levels in lower halves versus those in upper halves (L/U) increased from 1.0 at 0 h and reached a maximum value of 1.45 at 8 h. When shoots were grown in the dark for 10 d, to deplete starch in the chloroplast, the gravity-induced L/U of IAA was reduced to 1.0. N-naphthylphthalamic acid (NPA) and 2,3,5-triiodobenzoic acid (TIBA), both auxin transport inhibitors, significantly reduced the amount of gravitropic curvature and gravity-induced lateral IAA transport, but did not reduce the gravity-induced late change in the L/U ratio of IP(3) levels. U73122, a specific phospholipase C (PLC) inhibitor, decreased gravity-induced curvature. Because U73122 reduced the ratio of L/U of IAA imposed by gravistimulation, it is clear that IAA transport is correlated with changes in IP(3) levels upon gravistimulation. These results indicate that gravistimulation-induced differential lateral IAA transport may result from the onset of graviperception in the chloroplast gravisensors coupled with gravity-induced asymmetric changes in IP(3) levels in oat shoot pulvini.

          Related collections

          Author and article information

          Comments

          Comment on this article