20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity and Biotic Homogenization of Urban Land-Snail Faunas in Relation to Habitat Types and Macroclimate in 32 Central European Cities

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The effects of non-native species invasions on community diversity and biotic homogenization have been described for various taxa in urban environments, but not for land snails. Here we relate the diversity of native and non-native land-snail urban faunas to urban habitat types and macroclimate, and analyse homogenization effects of non-native species across cities and within the main urban habitat types. Land-snail species were recorded in seven 1-ha plots in 32 cities of ten countries of Central Europe and Benelux (224 plots in total). Each plot represented one urban habitat type characterized by different management and a specific disturbance regime. For each plot, we obtained January, July and mean annual temperature and annual precipitation. Snail species were classified into either native or non-native. The effects of habitat type and macroclimate on the number of native and non-native species were analysed using generalized estimating equations; the homogenization effect of non-native species based on the Jaccard similarity index and homogenization index. We recorded 67 native and 20 non-native species. Besides being more numerous, native species also had much higher beta diversity than non-natives. There were significant differences between the studied habitat types in the numbers of native and non-native species, both of which decreased from less to heavily urbanized habitats. Macroclimate was more important for the number of non-native than native species; however in both cases the effect of climate on diversity was overridden by the effect of urban habitat type. This is the first study on urban land snails documenting that non-native land-snail species significantly contribute to homogenization among whole cities, but both the homogenization and diversification effects occur when individual habitat types are compared among cities. This indicates that the spread of non-native snail species may cause biotic homogenization, but it depends on scale and habitat type.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: not found

          Homogenization of fish faunas across the United States.

          Fish faunas across the continental United States have become more similar through time because of widespread introductions of a group of cosmopolitan species intended to enhance food and sport fisheries. On average, pairs of states have 15.4 more species in common now than before European settlement of North America. The 89 pairs of states that formerly had no species in common now share an average of 25.2 species. Introductions have played a larger role than extirpations in homogenizing fish faunas. Western and New England states have received the most introductions, which is a reflection of the small number of native fishes in these areas considered desirable gamefish by settlers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Biotic homogenization: a few winners replacing many losers in the next mass extinction.

            Human activities are not random in their negative and positive impacts on biotas. Emerging evidence shows that most species are declining as a result of human activities ('losers') and are being replaced by a much smaller number of expanding species that thrive in human-altered environments ('winners'). The result will be a more homogenized biosphere with lower diversity at regional and global scales. Recent data also indicate that the many losers and few winners tend to be non-randomly distributed among higher taxa and ecological groups, enhancing homogenization.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toward a mechanistic understanding and prediction of biotic homogenization.

              The widespread replacement of native species with cosmopolitan, nonnative species is homogenizing the global fauna and flora. While the empirical study of biotic homogenization is substantial and growing, theoretical aspects have yet to be explored. Consequently, the breadth of possible ecological mechanisms that can shape current and future patterns and rates of homogenization remain largely unknown. Here, we develop a conceptual model that describes 14 potential scenarios by which species invasions and/or extinctions can lead to various trajectories of biotic homogenization (increased community similarity) or differentiation (decreased community similarity); we then use a simulation approach to explore the model's predictions. We found changes in community similarity to vary with the type and number of nonnative and native species, the historical degree of similarity among the communities, and, to a lesser degree, the richness of the recipient communities. Homogenization is greatest when similar species invade communities, causing either no extinction or differential extinction of native species. The model predictions are consistent with current empirical data for fish, bird, and plant communities and therefore may represent the dominant mechanisms of contemporary homogenization. We present a unifying model illustrating how the balance between invading and extinct species dictates the outcome of biotic homogenization. We conclude by discussing a number of critical but largely unrecognized issues that bear on the empirical study of biotic homogenization, including the importance of spatial scale, temporal scale, and data resolution. We argue that the study of biotic homogenization needs to be placed in a more mechanistic and predictive framework in order for studies to provide adequate guidance in conservation efforts to maintain regional distinctness of the global biota.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                6 August 2013
                : 8
                : 8
                : e71783
                Affiliations
                [1 ]Department of Botany and Zoology, Masaryk University, Brno, Czech Republic, Czech Republic
                [2 ]Department of Biology, Masaryk University, Brno, Czech Republic, Czech Republic
                [3 ]Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
                [4 ]Department of Zoology, Charles University in Prague, Praha, Czech Republic
                Roehampton university, United Kingdom
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MH ZL MCh. Performed the experiments: MH ZL LJ TČ MCh. Analyzed the data: MH ZL. Contributed reagents/materials/analysis tools: MH LJ TČ. Wrote the manuscript: MH ZL LJ TČ MCh.

                Article
                PONE-D-13-07328
                10.1371/journal.pone.0071783
                3735557
                23936525
                6a07448b-3d26-49c6-a885-26acf8af9341
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 February 2013
                : 3 July 2013
                Funding
                This study was funded by the Grant Agency of the Academy of Sciences of the Czech Republic (IAA601630803) and Grant Agency of the Slovak Academy of Sciences (VEGA) No. 2/0037/11. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article