27
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Mechanism of β4 Subunit Modulation of BK Channels

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Large-conductance (BK-type) Ca 2+-activated potassium channels are activated by membrane depolarization and cytoplasmic Ca 2+. BK channels are expressed in a broad variety of cells and have a corresponding diversity in properties. Underlying much of the functional diversity is a family of four tissue-specific accessory subunits (β1–β4). Biophysical characterization has shown that the β4 subunit confers properties of the so-called “type II” BK channel isotypes seen in brain. These properties include slow gating kinetics and resistance to iberiotoxin and charybdotoxin blockade. In addition, the β4 subunit reduces the apparent voltage sensitivity of channel activation and has complex effects on apparent Ca 2+ sensitivity. Specifically, channel activity at low Ca 2+ is inhibited, while at high Ca 2+, activity is enhanced. The goal of this study is to understand the mechanism underlying β4 subunit action in the context of a dual allosteric model for BK channel gating. We observed that β4's most profound effect is a decrease in P o (at least 11-fold) in the absence of calcium binding and voltage sensor activation. However, β4 promotes channel opening by increasing voltage dependence of P o-V relations at negative membrane potentials. In the context of the dual allosteric model for BK channels, we find these properties are explained by distinct and opposing actions of β4 on BK channels. β4 reduces channel opening by decreasing the intrinsic gating equilibrium (L 0), and decreasing the allosteric coupling between calcium binding and voltage sensor activation (E). However, β4 has a compensatory effect on channel opening following depolarization by shifting open channel voltage sensor activation (Vh o) to more negative membrane potentials. The consequence is that β4 causes a net positive shift of the G-V relationship (relative to α subunit alone) at low calcium. At higher calcium, the contribution by Vh o and an increase in allosteric coupling to Ca 2+ binding (C) promotes a negative G-V shift of α+β4 channels as compared to α subunits alone. This manner of modulation predicts that type II BK channels are downregulated by β4 at resting voltages through effects on L 0. However, β4 confers a compensatory effect on voltage sensor activation that increases channel opening during depolarization.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Coupling between Voltage Sensor Activation, Ca2+ Binding and Channel Opening in Large Conductance (BK) Potassium Channels

          To determine how intracellular Ca2+ and membrane voltage regulate the gating of large conductance Ca2+-activated K+ (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca2+ over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage sensor activation and the closed (C) to open (O) conformational change (Horrigan, F.T., and R.W. Aldrich. 1999. J. Gen. Physiol. 114:305–336; Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277–304). In 0 Ca2+, the steady-state gating charge-voltage (QSS-V) relationship is shallower and shifted to more negative voltages than the conductance-voltage (GK-V) relationship. Calcium alters the relationship between Q-V and G-V, shifting both to more negative voltages such that they almost superimpose in 70 μM Ca2+. This change reflects a differential effect of Ca2+ on voltage sensor activation and channel opening. Ca2+ has only a small effect on the fast component of ON gating current, indicating that Ca2+ binding has little effect on voltage sensor activation when channels are closed. In contrast, open probability measured at very negative voltages (less than −80 mV) increases more than 1,000-fold in 70 μM Ca2+, demonstrating that Ca2+ increases the C-O equilibrium constant under conditions where voltage sensors are not activated. Thus, Ca2+ binding and voltage sensor activation act almost independently, to enhance channel opening. This dual-allosteric mechanism can reproduce the steady-state behavior of mSlo1 over a wide range of conditions, with the assumption that activation of individual Ca2+ sensors or voltage sensors additively affect the energy of the C-O transition and that a weak interaction between Ca2+ sensors and voltage sensors occurs independent of channel opening. By contrast, macroscopic IK kinetics indicate that Ca2+ and voltage dependencies of C-O transition rates are complex, leading us to propose that the C-O conformational change may be described by a complex energy landscape.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder.

            The large conductance calcium-sensitive potassium (BK) channel is widely expressed in many organs and tissues, but its in vivo physiological functions have not been fully defined. Here we report a genetic locus associated with a human syndrome of coexistent generalized epilepsy and paroxysmal dyskinesia on chromosome 10q22 and show that a mutation of the alpha subunit of the BK channel causes this syndrome. The mutant BK channel had a markedly greater macroscopic current. Single-channel recordings showed an increase in open-channel probability due to a three- to fivefold increase in Ca(2+) sensitivity. We propose that enhancement of BK channels in vivo leads to increased excitability by inducing rapid repolarization of action potentials, resulting in generalized epilepsy and paroxysmal dyskinesia by allowing neurons to fire at a faster rate. These results identify a gene that is mutated in generalized epilepsy and paroxysmal dyskinesia and have implications for the pathogenesis of human epilepsy, the neurophysiology of paroxysmal movement disorders and the role of BK channels in neurological disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cloning and functional characterization of novel large conductance calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4.

              We present the cloning and characterization of two novel calcium-activated potassium channel beta subunits, hKCNMB3 and hKCNMB4, that are enriched in the testis and brain, respectively. We compare and contrast the steady state and kinetic properties of these beta subunits with the previously cloned mouse beta1 (mKCNMB1) and the human beta2 subunit (hKCNMB2). Once inactivation is removed, we find that hKCNMB2 has properties similar to mKCNMB1. hKCNMB2 slows Hslo1 channel gating and shifts the current-voltage relationship to more negative potentials. hKCNMB3 and hKCNMB4 have distinct effects on slo currents not observed with mKCNMB1 and hKCNMB2. Although we found that hKCNMB3 does interact with Hslo channels, its effects on Hslo1 channel properties were slight, increasing Hslo1 activation rates. In contrast, hKCNMB4 slows Hslo1 gating kinetics, and modulates the apparent calcium sensitivity of Hslo1. We found that the different effects of the beta subunits on some Hslo1 channel properties are calcium-dependent. mKCNMB1 and hKCNMB2 slow activation at 1 microM but not at 10 microM free calcium concentrations. hKCNMB4 decreases Hslo1 channel openings at low calcium concentrations but increases channel openings at high calcium concentrations. These results suggest that beta subunits in diverse tissue types fine-tune slo channel properties to the needs of a particular cell.
                Bookmark

                Author and article information

                Journal
                J Gen Physiol
                The Journal of General Physiology
                The Rockefeller University Press
                0022-1295
                1540-7748
                April 2006
                : 127
                : 4
                : 449-465
                Affiliations
                Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
                Author notes

                Correspondence to Robert Brenner: brennerr@ 123456uthscsa.edu

                Article
                200509436
                10.1085/jgp.200509436
                2151511
                16567466
                6a179cec-dc81-4f50-9c34-71ddc8bfb840
                Copyright © 2006, The Rockefeller University Press
                History
                : 17 October 2005
                : 7 March 2006
                Categories
                Articles
                Article

                Anatomy & Physiology
                Anatomy & Physiology

                Comments

                Comment on this article