24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Development and implementation of rapid metabolic engineering tools for chemical and fuel production in Geobacillus thermoglucosidasius NCIMB 11955

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The thermophile Geobacillus thermoglucosidasius has considerable attraction as a chassis for the production of chemicals and fuels. It utilises a wide range of sugars and oligosaccharides typical of those derived from lignocellulose and grows at elevated temperatures. The latter improves the rate of feed conversion, reduces fermentation cooling costs and minimises the risks of contamination. Full exploitation of its potential has been hindered by a dearth of effective gene tools.

          Results

          Here we designed and tested a collection of vectors (pMTL60000 series) in G. thermoglucosidasius NCIMB 11955 equivalent to the widely used clostridial pMTL80000 modular plasmid series. By combining a temperature-sensitive replicon and a heterologous pyrE gene from Geobacillus kaustophilus as a counter-selection marker, a highly effective and rapid gene knock-out/knock-in system was established. Its use required the initial creation of uracil auxotroph through deletion of pyrE using allele-coupled exchange (ACE) and selection for resistance to 5-fluoroorotic acid. The turnaround time for the construction of further mutants in this pyrE minus strain was typically 5 days. Following the creation of the desired mutant, the pyrE allele was restored to wild type, within 3 days, using ACE and selection for uracil prototrophy. Concomitant with this process, cargo DNA ( pheB) could be readily integrated at the pyrE locus. The system’s utility was demonstrated through the generation in just 30 days of three independently engineered strains equivalent to a previously constructed ethanol production strain, TM242. This involved the creation of two in-frame deletions ( ldh and pfl) and the replacement of a promoter region of a third gene ( pdh) with an up-regulated variant. In no case did the production of ethanol match that of TM242. Genome sequencing of the parental strain, TM242, and constructed mutant derivatives suggested that NCIMB 11955 is prone to the emergence of random mutations which can dramatically affect phenotype.

          Conclusions

          The procedures and principles developed for clostridia, based on the use of pyrE alleles and ACE, may be readily deployed in G. thermoglucosidasius. Marker-less, in-frame deletion mutants can be rapidly generated in 5 days. However, ancillary mutations frequently arise, which can influence phenotype. This observation emphasises the need for improved screening and selection procedures at each step of the engineering processes, based on the generation of multiple, independent strains and whole-genome sequencing.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s13068-016-0692-x) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          A modular system for Clostridium shuttle plasmids.

          Despite their medical and industrial importance, our basic understanding of the biology of the genus Clostridium is rudimentary in comparison to their aerobic counterparts in the genus Bacillus. A major contributing factor has been the comparative lack of sophistication in the gene tools available to the clostridial molecular biologist, which are immature, and in clear need of development. The transfer and maintenance of recombinant, replicative plasmids into various species of Clostridium has been reported, and several elements suitable as shuttle plasmid components are known. However, these components have to-date only been available in disparate plasmid contexts, and their use has not been broadly explored. Here we describe the specification, design and construction of a standardized modular system for Clostridium-Escherichia coli shuttle plasmids. Existing replicons and selectable markers were incorporated, along with a novel clostridial replicon. The properties of these components were compared, and the data allow researchers to identify combinations of components potentially suitable for particular hosts and applications. The system has been extensively tested in our laboratory, where it is utilized in all ongoing recombinant work. We propose that adoption of this modular system as a standard would be of substantial benefit to the Clostridium research community, whom we invite to use and contribute to the system.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Evolution of mutation rates in bacteria.

            Evolutionary success of bacteria relies on the constant fine-tuning of their mutation rates, which optimizes their adaptability to constantly changing environmental conditions. When adaptation is limited by the mutation supply rate, under some conditions, natural selection favours increased mutation rates by acting on allelic variation of the genetic systems that control fidelity of DNA replication and repair. Mutator alleles are carried to high frequency through hitchhiking with the adaptive mutations they generate. However, when fitness gain no longer counterbalances the fitness loss due to continuous generation of deleterious mutations, natural selection favours reduction of mutation rates. Selection and counter-selection of high mutation rates depends on many factors: the number of mutations required for adaptation, the strength of mutator alleles, bacterial population size, competition with other strains, migration, and spatial and temporal environmental heterogeneity. Such modulations of mutation rates may also play a role in the evolution of antibiotic resistance.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Microbial production of short-chain alkanes.

              Increasing concerns about limited fossil fuels and global environmental problems have focused attention on the need to develop sustainable biofuels from renewable resources. Although microbial production of diesel has been reported, production of another much in demand transport fuel, petrol (gasoline), has not yet been demonstrated. Here we report the development of platform Escherichia coli strains that are capable of producing short-chain alkanes (SCAs; petrol), free fatty acids (FFAs), fatty esters and fatty alcohols through the fatty acyl (acyl carrier protein (ACP)) to fatty acid to fatty acyl-CoA pathway. First, the β-oxidation pathway was blocked by deleting the fadE gene to prevent the degradation of fatty acyl-CoAs generated in vivo. To increase the formation of short-chain fatty acids suitable for subsequent conversion to SCAs in vivo, the activity of 3-oxoacyl-ACP synthase (FabH), which is inhibited by unsaturated fatty acyl-ACPs, was enhanced to promote the initiation of fatty acid biosynthesis by deleting the fadR gene; deletion of the fadR gene prevents upregulation of the fabA and fabB genes responsible for unsaturated fatty acids biosynthesis. A modified thioesterase was used to convert short-chain fatty acyl-ACPs to the corresponding FFAs, which were then converted to SCAs by the sequential reactions of E. coli fatty acyl-CoA synthetase, Clostridium acetobutylicum fatty acyl-CoA reductase and Arabidopsis thaliana fatty aldehyde decarbonylase. The final engineered strain produced up to 580.8 mg l(-1) of SCAs consisting of nonane (327.8 mg l(-1)), dodecane (136.5 mg l(-1)), tridecane (64.8 mg l(-1)), 2-methyl-dodecane (42.8 mg l(-1)) and tetradecane (8.9 mg l(-1)), together with small amounts of other hydrocarbons. Furthermore, this platform strain could produce short-chain FFAs using a fadD-deleted strain, and short-chain fatty esters by introducing the Acinetobacter sp. ADP1 wax ester synthase (atfA) and the E. coli mutant alcohol dehydrogenase (adhE(mut)).
                Bookmark

                Author and article information

                Contributors
                lili.sheng@nottingham.ac.uk
                katalin.kovacs@nottingham.ac.uk
                Klaus.Winzer@nottingham.ac.uk
                ying.zhang@nottingham.ac.uk
                Nigel.Minton@nottingham.ac.uk
                Journal
                Biotechnol Biofuels
                Biotechnol Biofuels
                Biotechnology for Biofuels
                BioMed Central (London )
                1754-6834
                3 January 2017
                3 January 2017
                2017
                : 10
                : 5
                Affiliations
                Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University of Nottingham, University Park, Nottingham, NG7 2RD UK
                Article
                692
                10.1186/s13068-016-0692-x
                5210280
                28066509
                6a1965dc-76c2-4ebc-82ff-10348a270b5b
                © The Author(s) 2017

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 2 November 2016
                : 17 December 2016
                Funding
                Funded by: FundRef http://dx.doi.org/10.13039/501100000268, Biotechnology and Biological Sciences Research Council;
                Award ID: BB/K020358/1
                Award Recipient :
                Categories
                Research
                Custom metadata
                © The Author(s) 2017

                Biotechnology
                allelic exchange,in-frame deletion,counter-selection marker,pyre,geobacillus thermoglucosidasius,whole-genome sequencing

                Comments

                Comment on this article