6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Glutamate metabolism in epilepsy: 13C-magnetic resonance spectroscopy observation in the human brain.

      Neuroreport
      Adult, Brain, metabolism, physiopathology, Carbon Isotopes, Epilepsy, Female, Glucose, Glutamic Acid, Glutamine, Humans, Magnetic Resonance Spectroscopy, Male

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To clarify changes in glutamate metabolism in the brain with chronic epileptic activities, 13C-magnetic resonance spectroscopy observation of glutamate and glutamine synthesis after oral administration of [1-13C] glucose (Glc C1) (0.75 g/kg) was performed in intractable occipital lobe epilepsy patients (n=5) and controls (n=10). 1H[13C]-spectra were obtained from two voxels of 64 ml placed on the bilateral parieto-occipital lobes of the study participants. Time courses for 13C-incorporation into 4-glutamate and 3-glutamate (Glu C4, C3) and 4-glutamine (Gln C4) were obtained and the concentrations of Glu C4, C3 and Gln C4 at the time between 120 and 150 min after Glc C1 administration was calculated. Concentration of Gln C4 was increased in the epilepsy patients [control: 0.39 mM (SD 0.14), epilepsy: 0.60 mM (SD 0.15), P<0.05], whereas those of Glu C4 and Glu C3 were not. The present study revealed increased glutamine synthesis compared with glutamate formation in a widespread cortical area with sustained epileptiform activities, possibly a result of chronic excessive glutamate release from neurons and subsequent uptake into astrocytes.

          Related collections

          Author and article information

          Comments

          Comment on this article