30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Estrogen-Eluting Stents

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Coronary stenting is routinely utilized to treat symptomatic obstructive coronary artery disease. However, the efficacy of bare metal coronary stents has been historically limited by restenosis, which is primarily due to excessive neointima formation. Drug-eluting stents (DES) are composed of a stainless steel backbone encompassed by a polymer in which a variety of drugs that inhibit smooth muscle cell proliferation and excessive neointima formation are incorporated. DES have significantly reduced the incidence of restenosis but are also associated with a small (~0.5% per year) but significant risk of late stent thrombosis. In that regard, estrogen-eluting stents have also undergone clinical evaluation in reducing restenosis with the additional potential benefit of enhancing reendothelialization of the stent surface to reduce stent thrombosis. Estrogen directly promotes vasodilatation, enhances endothelial healing, and prevents smooth muscle cell migration and proliferation. Due to these mechanisms, estrogen has been postulated to reduce neointimal hyperplasia without delaying endothelial healing. In animal studies, estrogen treatment was effective in decreasing neointimal hyperplasia after both balloon angioplasty and stenting regardless of the method of drug delivery. The first uncontrolled human study using estrogen-coated stents demonstrated acceptable efficacy in reducing late lumen loss. However, subsequent randomized clinical trials did not show superiority of estrogen-eluting stents over bare metal stents or DES. Further studies are required to determine optimal dose and method of estrogen delivery with coronary stenting and whether this approach will be a viable alternative to the current DES armamentarium.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A comparison of balloon-expandable-stent implantation with balloon angioplasty in patients with coronary artery disease. Benestent Study Group.

          Balloon-expandable coronary-artery stents were developed to prevent coronary restenosis after coronary angioplasty. These devices hold coronary vessels open at sites that have been dilated. However, it is unknown whether stenting improves long-term angiographic and clinical outcomes as compared with standard balloon angioplasty. A total of 520 patients with stable angina and a single coronary-artery lesion were randomly assigned to either stent implantation (262 patients) or standard balloon angioplasty (258 patients). The primary clinical end points were death, the occurrence of a cerebrovascular accident, myocardial infarction, the need for coronary-artery bypass surgery, or a second percutaneous intervention involving the previously treated lesion, either at the time of the initial procedure or during the subsequent seven months. The primary angiographic end point was the minimal luminal diameter at follow-up, as determined by quantitative coronary angiography. After exclusions, 52 patients in the stent group (20 percent) and 76 patients in the angioplasty group (30 percent) reached a primary clinical end point (relative risk, 0.68; 95 percent confidence interval, 0.50 to 0.92; P = 0.02). The difference in clinical-event rates was explained mainly by a reduced need for a second coronary angioplasty in the stent group (relative risk, 0.58; 95 percent confidence interval, 0.40 to 0.85; P = 0.005). The mean (+/- SD) minimal luminal diameters immediately after the procedure were 2.48 +/- 0.39 mm in the stent group and 2.05 +/- 0.33 mm in the angioplasty group; at follow-up, the diameters were 1.82 +/- 0.64 mm in the stent group and 1.73 +/- 0.55 mm in the angioplasty group (P = 0.09), which correspond to rates of restenosis (diameter of stenosis, > or = 50 percent) of 22 and 32 percent, respectively (P = 0.02). Peripheral vascular complications necessitating surgery, blood transfusion, or both were more frequent after stenting than after balloon angioplasty (13.5 vs. 3.1 percent, P < 0.001). The mean hospital stay was significantly longer in the stent group than in the angioplasty group (8.5 vs. 3.1 days, P < 0.001). Over seven months of follow-up, the clinical and angiographic outcomes were better in patients who received a stent than in those who received standard coronary angioplasty. However, this benefit was achieved at the cost of a significantly higher risk of vascular complications at the access site and a longer hospital stay.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A randomized comparison of coronary-stent placement and balloon angioplasty in the treatment of coronary artery disease. Stent Restenosis Study Investigators.

            Coronary-stent placement is a new technique in which a balloon-expandable, stainless-steel, slotted tube is implanted at the site of a coronary stenosis. The purpose of this study was to compare the effects of stent placement and standard balloon angioplasty on angiographically detected restenosis and clinical outcomes. We randomly assigned 410 patients with symptomatic coronary disease to elective placement of a Palmaz-Schatz stent or to standard balloon angioplasty. Coronary angiography was performed at base line, immediately after the procedure, and six months later. The patients who underwent stenting had a higher rate of procedural success than those who underwent standard balloon angioplasty (96.1 percent vs. 89.6 percent, P = 0.011), a larger immediate increase in the diameter of the lumen (1.72 +/- 0.46 vs. 1.23 +/- 0.48 mm, P < 0.001), and a larger luminal diameter immediately after the procedure (2.49 +/- 0.43 vs. 1.99 +/- 0.47 mm, P < 0.001). At six months, the patients with stented lesions continued to have a larger luminal diameter (1.74 +/- 0.60 vs. 1.56 +/- 0.65 mm, P = 0.007) and a lower rate of restenosis (31.6 percent vs. 42.1 percent, P = 0.046) than those treated with balloon angioplasty. There were no coronary events (death; myocardial infarction; coronary-artery bypass surgery; vessel closure, including stent thrombosis; or repeated angioplasty) in 80.5 percent of the patients in the stent group and 76.2 percent of those in the angioplasty group (P = 0.16). Revascularization of the original target lesion because of recurrent myocardial ischemia was performed less frequently in the stent group than in the angioplasty group (10.2 percent vs. 15.4 percent, P = 0.06). In selected patients, placement of an intracoronary stent, as compared with balloon angioplasty, results in an improved rate of procedural success, a lower rate of angiographically detected restenosis, a similar rate of clinical events after six months, and a less frequent need for revascularization of the original coronary lesion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Randomized trial of estrogen plus progestin for secondary prevention of coronary heart disease in postmenopausal women. Heart and Estrogen/progestin Replacement Study (HERS) Research Group.

              Observational studies have found lower rates of coronary heart disease (CHD) in postmenopausal women who take estrogen than in women who do not, but this potential benefit has not been confirmed in clinical trials. To determine if estrogen plus progestin therapy alters the risk for CHD events in postmenopausal women with established coronary disease. Randomized, blinded, placebo-controlled secondary prevention trial. Outpatient and community settings at 20 US clinical centers. A total of 2763 women with coronary disease, younger than 80 years, and postmenopausal with an intact uterus. Mean age was 66.7 years. Either 0.625 mg of conjugated equine estrogens plus 2.5 mg of medroxyprogesterone acetate in 1 tablet daily (n = 1380) or a placebo of identical appearance (n = 1383). Follow-up averaged 4.1 years; 82% of those assigned to hormone treatment were taking it at the end of 1 year, and 75% at the end of 3 years. The primary outcome was the occurrence of nonfatal myocardial infarction (MI) or CHD death. Secondary cardiovascular outcomes included coronary revascularization, unstable angina, congestive heart failure, resuscitated cardiac arrest, stroke or transient ischemic attack, and peripheral arterial disease. All-cause mortality was also considered. Overall, there were no significant differences between groups in the primary outcome or in any of the secondary cardiovascular outcomes: 172 women in the hormone group and 176 women in the placebo group had MI or CHD death (relative hazard [RH], 0.99; 95% confidence interval [CI], 0.80-1.22). The lack of an overall effect occurred despite a net 11% lower low-density lipoprotein cholesterol level and 10% higher high-density lipoprotein cholesterol level in the hormone group compared with the placebo group (each P<.001). Within the overall null effect, there was a statistically significant time trend, with more CHD events in the hormone group than in the placebo group in year 1 and fewer in years 4 and 5. More women in the hormone group than in the placebo group experienced venous thromboembolic events (34 vs 12; RH, 2.89; 95% CI, 1.50-5.58) and gallbladder disease (84 vs 62; RH, 1.38; 95% CI, 1.00-1.92). There were no significant differences in several other end points for which power was limited, including fracture, cancer, and total mortality (131 vs 123 deaths; RH, 1.08; 95% CI, 0.84-1.38). During an average follow-up of 4.1 years, treatment with oral conjugated equine estrogen plus medroxyprogesterone acetate did not reduce the overall rate of CHD events in postmenopausal women with established coronary disease. The treatment did increase the rate of thromboembolic events and gallbladder disease. Based on the finding of no overall cardiovascular benefit and a pattern of early increase in risk of CHD events, we do not recommend starting this treatment for the purpose of secondary prevention of CHD. However, given the favorable pattern of CHD events after several years of therapy, it could be appropriate for women already receiving this treatment to continue.
                Bookmark

                Author and article information

                Contributors
                stsimikas@ucsd.edu
                Journal
                J Cardiovasc Transl Res
                Journal of Cardiovascular Translational Research
                Springer US (Boston )
                1937-5387
                1937-5395
                19 May 2009
                September 2009
                : 2
                : 3
                : 240-244
                Affiliations
                [1 ]Division of Cardiology, Department of Internal Medicine, Seoul Eulji Hospital, School of Medicine, Eulji University, Seoul, Republic of Korea
                [2 ]Division of Cardiology, University of California San Diego, San Diego, CA USA
                [3 ]Vascular Medicine Program, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA 92093-0682 USA
                Article
                9105
                10.1007/s12265-009-9105-x
                2719737
                19654888
                6a3960f2-7a03-490c-8c87-a60fd569c418
                © The Author(s) 2009
                History
                : 6 April 2009
                : 27 April 2009
                Categories
                Article
                Custom metadata
                © Springer Science+Business Media, LLC 2009

                Cardiovascular Medicine
                estrogen,drug-eluting stent
                Cardiovascular Medicine
                estrogen, drug-eluting stent

                Comments

                Comment on this article