44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Fulde–Ferrell–Larkin–Ovchinnikov state for ultracold fermions in lattice and harmonic potentials: a review

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references286

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Topological Insulators

          , (2011)
          Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator, but have protected conducting states on their edge or surface. The 2D topological insulator is a quantum spin Hall insulator, which is a close cousin of the integer quantum Hall state. A 3D topological insulator supports novel spin polarized 2D Dirac fermions on its surface. In this Colloquium article we will review the theoretical foundation for these electronic states and describe recent experiments in which their signatures have been observed. We will describe transport experiments on HgCdTe quantum wells that demonstrate the existence of the edge states predicted for the quantum spin Hall insulator. We will then discuss experiments on Bi_{1-x}Sb_x, Bi_2 Se_3, Bi_2 Te_3 and Sb_2 Te_3 that establish these materials as 3D topological insulators and directly probe the topology of their surface states. We will then describe exotic states that can occur at the surface of a 3D topological insulator due to an induced energy gap. A magnetic gap leads to a novel quantum Hall state that gives rise to a topological magnetoelectric effect. A superconducting energy gap leads to a state that supports Majorana fermions, and may provide a new venue for realizing proposals for topological quantum computation. We will close by discussing prospects for observing these exotic states, a well as other potential device applications of topological insulators.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Many-Body Physics with Ultracold Gases

            This article reviews recent experimental and theoretical progress on many-body phenomena in dilute, ultracold gases. Its focus are effects beyond standard weak-coupling descriptions, like the Mott-Hubbard-transition in optical lattices, strongly interacting gases in one and two dimensions or lowest Landau level physics in quasi two-dimensional gases in fast rotation. Strong correlations in fermionic gases are discussed in optical lattices or near Feshbach resonances in the BCS-BEC crossover.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Topological insulators and superconductors

              Topological insulators are new states of quantum matter which can not be adiabatically connected to conventional insulators and semiconductors. They are characterized by a full insulating gap in the bulk and gapless edge or surface states which are protected by time-reversal symmetry. These topological materials have been theoretically predicted and experimentally observed in a variety of systems, including HgTe quantum wells, BiSb alloys, and Bi\(_2\)Te\(_3\) and Bi\(_2\)Se\(_3\) crystals. We review theoretical models, materials properties and experimental results on two-dimensional and three-dimensional topological insulators, and discuss both the topological band theory and the topological field theory. Topological superconductors have a full pairing gap in the bulk and gapless surface states consisting of Majorana fermions. We review the theory of topological superconductors in close analogy to the theory of topological insulators.
                Bookmark

                Author and article information

                Journal
                Reports on Progress in Physics
                Rep. Prog. Phys.
                IOP Publishing
                0034-4885
                1361-6633
                April 01 2018
                April 01 2018
                February 19 2018
                : 81
                : 4
                : 046401
                Article
                10.1088/1361-6633/aaa4ad
                6a3d93b3-f192-4f0d-a98e-2af4ed65f387
                © 2018

                http://iopscience.iop.org/info/page/text-and-data-mining

                http://iopscience.iop.org/page/copyright

                History

                Comments

                Comment on this article