41
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The first microbial environment of infants born by C-section: the operating room microbes

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Newborns delivered by C-section acquire human skin microbes just after birth, but the sources remain unknown. We hypothesized that the operating room (OR) environment contains human skin bacteria that could be seeding C-section born infants.

          Results

          To test this hypothesis, we sampled 11 sites in four operating rooms from three hospitals in two cities. Following a C-section procedure, we swabbed OR floors, walls, ventilation grids, armrests, and lamps. We sequenced the V4 region of the 16S rRNA gene of 44 samples using Illumina MiSeq platform. Sequences were analyzed using the QIIME pipeline. Only 68 % of the samples (30/44, >1000 sequences per site) yielded sufficient DNA reads to be analyzed. The bacterial content of OR dust corresponded to human skin bacteria, with dominance of Staphylococcus and Corynebacterium. Diversity of bacteria was the highest in the ventilation grids and walls but was also present on top of the surgery lamps. Beta diversity analyses showed OR dust bacterial content clustering first by city and then by hospital ( t test using unweighted UniFrac distances, p < 0.05).

          Conclusions

          We conclude that the dust from ORs, collected right after a C-section procedure, contains deposits of human skin bacteria. The OR microbiota is the first environment for C-section newborns, and OR microbes might be seeding the microbiome in these babies. Further studies are required to identify how this OR microbiome exposure contributes to the seeding of the neonatal microbiome. The results might be relevant to infant health, if the current increase in risk of immune and metabolic diseases in industrialized societies is related to lack of natural exposure to the vaginal microbiome during labor and birth.

          Electronic supplementary material

          The online version of this article (doi:10.1186/s40168-015-0126-1) contains supplementary material, which is available to authorized users.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Cesarean section and chronic immune disorders.

          Immune diseases such as asthma, allergy, inflammatory bowel disease, and type 1 diabetes have shown a parallel increase in prevalence during recent decades in westernized countries. The rate of cesarean delivery has also increased in this period and has been associated with the development of some of these diseases.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Size-resolved emission rates of airborne bacteria and fungi in an occupied classroom

            The role of human occupancy as a source of indoor biological aerosols is poorly understood. Size-resolved concentrations of total and biological particles in indoor air were quantified in a classroom under occupied and vacant conditions. Per-occupant emission rates were estimated through a mass-balance modeling approach, and the microbial diversity of indoor and outdoor air during occupancy was determined via rDNA gene sequence analysis. Significant increases of total particle mass and bacterial genome concentrations were observed during the occupied period compared to the vacant case. These increases varied in magnitude with the particle size and ranged from 3 to 68 times for total mass, 12–2700 times for bacterial genomes, and 1.5–5.2 times for fungal genomes. Emission rates per person-hour because of occupancy were 31 mg, 37 × 106 genome copies, and 7.3 × 106 genome copies for total particle mass, bacteria, and fungi, respectively. Of the bacterial emissions, ∼18% are from taxa that are closely associated with the human skin microbiome. This analysis provides size-resolved, per person-hour emission rates for these biological particles and illustrates the extent to which being in an occupied room results in exposure to bacteria that are associated with previous or current human occupants. Practical Implications Presented here are the first size-resolved, per person emission rate estimates of bacterial and fungal genomes for a common occupied indoor space. The marked differences observed between total particle and bacterial size distributions suggest that size-dependent aerosol models that use total particles as a surrogate for microbial particles incorrectly assess the fate of and human exposure to airborne bacteria. The strong signal of human microbiota in airborne particulate matter in an occupied setting demonstrates that the aerosol route can be a source of exposure to microorganisms emitted from the skin, hair, nostrils, and mouths of other occupants.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Transmission of diverse oral bacteria to murine placenta: evidence for the oral microbiome as a potential source of intrauterine infection.

              Microbial infection of the intrauterine environment is a major cause of preterm birth. The current paradigm indicates that intrauterine infections predominantly originate from the vaginal tract, with the organisms ascending into the sterile uterus. With the improvements in technology, an increasing number of bacterial species have been identified in intrauterine infections that do not belong to the vaginal microflora. We have demonstrated previously that intrauterine infections can originate from the oral cavity following hematogenous transmission. In this study, we begin to systemically examine what proportion of the oral microbiome can translocate to the placenta. Pooled saliva and pooled subgingival plaque samples were injected into pregnant mice through tail veins to mimic bacteremia, which occurs frequently during periodontal infections. The microbial species colonizing the murine placenta were detected using 16S rRNA gene-based PCR and clone analysis. A diverse group of bacterial species were identified, many of which have been associated with adverse pregnancy outcomes in humans although their sources of infection were not determined. Interestingly, the majority of these species were oral commensal organisms. This may be due to a dose effect but may also indicate a unique role of commensal species in intrauterine infection. In addition, a number of species were selectively "enriched" during the translocation, with a higher prevalence in the placenta than in the pooled saliva or subgingival plaque samples. These observations indicate that the placental translocation was species specific. This study provides the first insight into the diversity of oral bacteria associated with intrauterine infection.
                Bookmark

                Author and article information

                Contributors
                646-501-0703 , Maria.Dominguez-Bello@nyumc.org
                Journal
                Microbiome
                Microbiome
                Microbiome
                BioMed Central (London )
                2049-2618
                1 December 2015
                1 December 2015
                2015
                : 3
                : 59
                Affiliations
                [ ]Division of Translational Medicine, New York University School of Medicine, 550 1st Avenue, BCD 690, New York, NY 10016 USA
                [ ]Department of Veterans Affairs New York Harbor Healthcare System, New York, NY USA
                [ ]Hospital Universitario, Medical Science Campus, University of Puerto Rico, Puerto Rico, USA
                [ ]School of Architecture, University of Puerto Rico, Puerto Rico, USA
                Article
                126
                10.1186/s40168-015-0126-1
                4665759
                26620712
                6a449569-01eb-4550-8252-7fc783bd097f
                © Shin et al. 2015

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 1 September 2015
                : 29 October 2015
                Categories
                Research
                Custom metadata
                © The Author(s) 2015

                Comments

                Comment on this article