13
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Controlled growth of vertically oriented hematite/Pt composite nanorod arrays: use for photoelectrochemical water splitting.

      Nanotechnology

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Highly ordered and vertically grown Pt-doped α-Fe(2)O(3) nanorod arrays on a gold substrate were successfully prepared by the electrochemical co-deposition method using an anodized aluminum oxide template. The effect of the Pt doping in α-Fe(2)O(3) nanorod arrays on their water splitting ability was investigated for the first time. The elemental maps obtained by energy dispersive spectroscopy showed that the Pt was uniformly dispersed in the α-Fe(2)O(3) nanorod arrays. The photoelectrochemical properties of the α-Fe(2)O(3)/Pt composite nanorod arrays as a function of the Pt content were studied by measuring their photocurrent-potential behavior in 1 M NaOH electrolyte under AM 1.5 100 mW cm(-2) illumination. The Pt-doped α-Fe(2)O(3) nanorod arrays show an improvement in solar-to-hydrogen conversion efficiency (∼5%) for photoelectrochemical water splitting compared to undoped samples. To the best of our knowledge, it is the highest value yet obtained from α-Fe(2)O(3).

          Related collections

          Author and article information

          Journal
          21411913
          10.1088/0957-4484/22/17/175703

          Comments

          Comment on this article