6
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Octapod iron oxide nanoparticles as high-performance T₂ contrast agents for magnetic resonance imaging.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Spherical superparamagnetic iron oxide nanoparticles have been developed as T2-negative contrast agents for magnetic resonance imaging in clinical use because of their biocompatibility and ease of synthesis; however, they exhibit relatively low transverse relaxivity. Here we report a new strategy to achieve high transverse relaxivity by controlling the morphology of iron oxide nanoparticles. We successfully fabricate size-controllable octapod iron oxide nanoparticles by introducing chloride anions. The octapod iron oxide nanoparticles (edge length of 30 nm) exhibit an ultrahigh transverse relaxivity value (679.3 ± 30 mM(-1) s(-1)), indicating that these octapod iron oxide nanoparticles are much more effective T2 contrast agents for in vivo imaging and small tumour detection in comparison with conventional iron oxide nanoparticles, which holds great promise for highly sensitive, early stage and accurate detection of cancer in the clinic.

          Related collections

          Author and article information

          Journal
          Nat Commun
          Nature communications
          2041-1723
          2041-1723
          2013
          : 4
          Affiliations
          [1 ] State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
          Article
          ncomms3266
          10.1038/ncomms3266
          23903002
          6a6acc7a-63a1-4990-9f14-63a9196e393a
          History

          Comments

          Comment on this article