21
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Land-use change interacts with climate to determine elevational species redistribution

      research-article
      1 , 2 , 1 ,
      Nature Communications
      Nature Publishing Group UK

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Climate change is driving global species redistribution with profound social and economic impacts. However, species movement is largely constrained by habitat availability and connectivity, of which the interaction effects with climate change remain largely unknown. Here we examine published data on 2798 elevational range shifts from 43 study sites to assess the confounding effect of land-use change on climate-driven species redistribution. We show that baseline forest cover and recent forest cover change are critical predictors in determining the magnitude of elevational range shifts. Forest loss positively interacts with baseline temperature conditions, such that forest loss in warmer regions tends to accelerate species’ upslope movement. Consequently, not only climate but also habitat loss stressors and, importantly, their synergistic effects matter in forecasting species elevational redistribution, especially in the tropics where both stressors will increase the risk of net lowland biotic attrition.

          Abstract

          Habitat change and warming each contribute to species' elevational range shifts, but their synergistic effects have not been explored. Here, Guo et al. reanalyze published data and show that the interaction between warming and forest change predicts range shifts better than either factor on its own.

          Related collections

          Most cited references55

          • Record: found
          • Abstract: not found
          • Article: not found

          Fitting Linear Mixed-Effects Models Usinglme4

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Ecological and Evolutionary Responses to Recent Climate Change

            Ecological changes in the phenology and distribution of plants and animals are occurring in all well-studied marine, freshwater, and terrestrial groups. These observed changes are heavily biased in the directions predicted from global warming and have been linked to local or regional climate change through correlations between climate and biological variation, field and laboratory experiments, and physiological research. Range-restricted species, particularly polar and mountaintop species, show severe range contractions and have been the first groups in which entire species have gone extinct due to recent climate change. Tropical coral reefs and amphibians have been most negatively affected. Predator-prey and plant-insect interactions have been disrupted when interacting species have responded differently to warming. Evolutionary adaptations to warmer conditions have occurred in the interiors of species' ranges, and resource use and dispersal have evolved rapidly at expanding range margins. Observed genetic shifts modulate local effects of climate change, but there is little evidence that they will mitigate negative effects at the species level.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High-resolution global maps of 21st-century forest cover change.

              Quantification of global forest change has been lacking despite the recognized importance of forest ecosystem services. In this study, Earth observation satellite data were used to map global forest loss (2.3 million square kilometers) and gain (0.8 million square kilometers) from 2000 to 2012 at a spatial resolution of 30 meters. The tropics were the only climate domain to exhibit a trend, with forest loss increasing by 2101 square kilometers per year. Brazil's well-documented reduction in deforestation was offset by increasing forest loss in Indonesia, Malaysia, Paraguay, Bolivia, Zambia, Angola, and elsewhere. Intensive forestry practiced within subtropical forests resulted in the highest rates of forest change globally. Boreal forest loss due largely to fire and forestry was second to that in the tropics in absolute and proportional terms. These results depict a globally consistent and locally relevant record of forest change.
                Bookmark

                Author and article information

                Contributors
                tbone@hku.hk
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                3 April 2018
                3 April 2018
                2018
                : 9
                : 1315
                Affiliations
                [1 ]School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077 China
                [2 ]ISNI 0000 0001 0789 1385, GRID grid.11162.35, UR “Ecologie et Dynamique des Systèmes Anthropisés” (EDYSAN, UMR 7058 CNRS-UPJV), , Université de Picardie Jules Verne, ; 1 Rue des Louvels, 80037 Amiens Cedex 1, France
                Author information
                http://orcid.org/0000-0002-5426-324X
                http://orcid.org/0000-0003-0638-9582
                http://orcid.org/0000-0001-9999-2254
                Article
                3786
                10.1038/s41467-018-03786-9
                5883048
                29615626
                6a81f825-cc67-4a5a-8965-f0eec71a0a29
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 25 September 2017
                : 13 March 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article