22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Nuclear Factor Kb: An Oxidative Stress-Responsive Transcription Factor of Eukaryotic Cells (A Review)

      , ,
      Free Radical Research Communications
      Informa UK Limited

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          I kappa B: a specific inhibitor of the NF-kappa B transcription factor.

          In cells that do not express immunoglobulin kappa light chain genes, the kappa enhancer binding protein NF-kappa B is found in cytosolic fractions and exhibits DNA binding activity only in the presence of a dissociating agent such as sodium deoxycholate. The dependence on deoxycholate is shown to result from association of NF-kappa B with a 60- to 70-kilodalton inhibitory protein (I kappa B). The fractionated inhibitor can inactivate NF-kappa B from various sources--including the nuclei of phorbol ester-treated cells--in a specific, saturable, and reversible manner. The cytoplasmic localization of the complex of NF-kappa B and I kappa B was supported by enucleation experiments. An active phorbol ester must therefore, presumably by activation of protein kinase C, cause dissociation of a cytoplasmic complex of NF-kappa B and I kappa B by modifying I kappa B. this releases active NF-kappa B which can translocate into the nucleus to activate target enhancers. The data show the existence of a phorbol ester-responsive regulatory protein that acts by controlling the DNA binding activity and subcellular localization of a transcription factor.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Dithiocarbamates as potent inhibitors of nuclear factor kappa B activation in intact cells

            Dithiocarbamates and iron chelators were recently considered for the treatment of AIDS and neurodegenerative diseases. In this study, we show that dithiocarbamates and metal chelators can potently block the activation of nuclear factor kappa B (NF-kappa B), a transcription factor involved in human immunodeficiency virus type 1 (HIV-1) expression, signaling, and immediate early gene activation during inflammatory processes. Using cell cultures, the pyrrolidine derivative of dithiocarbamate (PDTC) was investigated in detail. Micromolar amounts of PDTC reversibly suppressed the release of the inhibitory subunit I kappa B from the latent cytoplasmic form of NF-kappa B in cells treated with phorbol ester, interleukin 1, and tumor necrosis factor alpha. Other DNA binding activities and the induction of AP-1 by phorbol ester were not affected. The antioxidant PDTC also blocked the activation of NF-kappa B by bacterial lipopolysaccharide (LPS), suggesting a role of oxygen radicals in the intracellular signaling of LPS. This idea was supported by demonstrating that treatment of pre-B and B cells with LPS induced the production of O2- and H2O2. PDTC prevented specifically the kappa B-dependent transactivation of reporter genes under the control of the HIV-1 long terminal repeat and simian virus 40 enhancer. The results from this study lend further support to the idea that oxygen radicals play an important role in the activation of NF-kappa B and HIV-1.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Redox regulation of fos and jun DNA-binding activity in vitro.

              The proto-oncogenes c-fos and c-jun function cooperatively as inducible transcription factors in signal transduction processes. Their protein products, Fos and Jun, form a heterodimeric complex that interacts with the DNA regulatory element known as the activator protein-1 (AP-1) binding site. Dimerization occurs via interaction between leucine zipper domains and serves to bring into proper juxtaposition a region in each protein that is rich in basic amino acids and that forms a DNA-binding domain. DNA binding of the Fos-Jun heterodimer was modulated by reduction-oxidation (redox) of a single conserved cysteine residue in the DNA-binding domains of the two proteins. Furthermore, a nuclear protein was identified that reduced Fos and Jun and stimulated DNA-binding activity in vitro. These results suggest that transcriptional activity mediated by AP-1 binding factors may be regulated by a redox mechanism.
                Bookmark

                Author and article information

                Journal
                Free Radical Research Communications
                Free Radical Research Communications
                Informa UK Limited
                8755-0199
                July 07 2009
                July 07 2009
                : 17
                : 4
                : 221-237
                Article
                10.3109/10715769209079515
                6a9aa4d3-7fe2-41c5-814a-e24355337a55
                © 2009
                History

                Comments

                Comment on this article