Blog
About

29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella ( Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

           K Livak,  T Schmittgen (2001)
          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research.

            We present here Blast2GO (B2G), a research tool designed with the main purpose of enabling Gene Ontology (GO) based data mining on sequence data for which no GO annotation is yet available. B2G joints in one application GO annotation based on similarity searches with statistical analysis and highlighted visualization on directed acyclic graphs. This tool offers a suitable platform for functional genomics research in non-model species. B2G is an intuitive and interactive desktop application that allows monitoring and comprehension of the whole annotation and analysis process. Blast2GO is freely available via Java Web Start at http://www.blast2go.de. http://www.blast2go.de -> Evaluation.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              REVIGO Summarizes and Visualizes Long Lists of Gene Ontology Terms

              Outcomes of high-throughput biological experiments are typically interpreted by statistical testing for enriched gene functional categories defined by the Gene Ontology (GO). The resulting lists of GO terms may be large and highly redundant, and thus difficult to interpret. REVIGO is a Web server that summarizes long, unintelligible lists of GO terms by finding a representative subset of the terms using a simple clustering algorithm that relies on semantic similarity measures. Furthermore, REVIGO visualizes this non-redundant GO term set in multiple ways to assist in interpretation: multidimensional scaling and graph-based visualizations accurately render the subdivisions and the semantic relationships in the data, while treemaps and tag clouds are also offered as alternative views. REVIGO is freely available at http://revigo.irb.hr/.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                15 February 2016
                2016
                : 6
                Affiliations
                [1 ]Department of Agricultural Biotechnology, Assam Agricultural University , Jorhat 785013, Assam, India
                [2 ]DBT-AAU Centre, Department of Agricultural Biotechnology, Assam Agricultural University , Jorhat 785013, Assam, India
                [3 ]Distributed Information Centre, Department of Agricultural Biotechnology, Assam Agricultural University , Jorhat 785013, Assam, India
                Author notes
                Article
                srep21026
                10.1038/srep21026
                4753472
                26877149
                Copyright © 2016, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                Categories
                Article

                Uncategorized

                Comments

                Comment on this article