34
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Vitamin D in the prevention, prediction and treatment of neurodegenerative and neuroinflammatory diseases

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Vitamin D research has gained increased attention in recent times due to its roles beyond bone health and calcium homeostasis, such as immunomodulation. In some parts of the brain and on immune cells, vitamin D hydroxylating enzymes and its receptors are located. Epidemiological evidence demonstrates that deficiency of Vitamin D is relevant for disease risk and course in multiple sclerosis (MS) and presumably also in neuromyelitis optica spectrum disorders (NMOSD), Parkinson’s disease (PD), and Alzheimer’s disease (AD). Although the exact mechanism underlying vitamin D effects in these diseases remains widely unexplored, human and animal studies continue to provide some hints. While the majority of vitamin D researchers so far speculate that vitamin D may be involved in disease pathogenesis, others could not show any association although none have reported that sufficient vitamin D worsens disease progression. The studies presented in this review suggest that whether vitamin D may have beneficial effects in disease course or not, may be dependent on factors such as ethnicity, gender, diet, vitamin D receptor (VDR) polymorphisms and sunlight exposure. We here review the possible role of vitamin D in the pathogenesis and disease course of MS, NMOSD, PD, and AD and potential therapeutic effects of vitamin D supplementation which may be relevant for predictive, preventive, and personalized medicine. We suggest areas to consider in vitamin D research for future studies and recommend the need to supplement patients with low vitamin D levels below 30 ng/ml to at least reach sufficient levels.

          Related collections

          Most cited references101

          • Record: found
          • Abstract: found
          • Article: not found

          Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain.

          Despite a growing body of evidence that Vitamin D is involved in mammalian brain functioning, there has been a lack of direct evidence about its role in the human brain. This paper reports, for the first time, the distribution of the 1,25-dihydroxyvitamin D3 receptor (VDR), and 1alpha-hydroxylase (1alpha-OHase), the enzyme responsible for the formation of the active vitamin in the human brain. The receptor and the enzyme were found in both neurons and glial cells in a regional and layer-specific pattern. The VDR was restricted to the nucleus whilst 1alpha-OHase was distributed throughout the cytoplasm. The distribution of the VDR in human brain was strikingly similar to that reported in rodents. Many regions contained equivalent amounts of both the VDR and 1alpha-OHase, however the macrocellular cells within the nucleus basalis of Meynert (NBM) and the Purkinje cells in the cerebellum expressed 1alpha-OHase in the absence of VDR. The strongest immunohistochemical staining for both the receptor and enzyme was in the hypothalamus and in the large (presumably dopaminergic) neurons within the substantia nigra. The observed distribution of the VDR is consistent with the proposal that Vitamin D operates in a similar fashion to the known neurosteroids. The widespread distribution of 1alpha-OHase and the VDR suggests that Vitamin D may have autocrine/paracrine properties in the human brain.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Genetics and biology of vitamin D receptor polymorphisms.

            The vitamin D endocrine system is involved in a wide variety of biological processes including bone metabolism, modulation of the immune response, and regulation of cell proliferation and differentiation. Variations in this endocrine system have, thus, been linked to several common diseases, including osteoarthritis (OA), diabetes, cancer, cardiovascular disease, and tuberculosis. Evidence to support this pleiotropic character of vitamin D has included epidemiological studies on circulating vitamin D hormone levels, but also genetic epidemiological studies. Genetic studies provide excellent opportunities to link molecular insights with epidemiological data and have therefore gained much interest. DNA sequence variations, which occur frequently in the population, are referred to as "polymorphisms" and can have modest and subtle but true biological effects. Their abundance in the human genome as well as their high frequencies in the human population have made them targets to explain variation in risk of common diseases. Recent studies have indicated many polymorphisms to exist in the vitamin D receptor (VDR) gene, but the influence of VDR gene polymorphisms on VDR protein function and signaling is largely unknown. So far, three adjacent restriction fragment length polymorphisms for BsmI, ApaI, and TaqI, respectively, at the 3' end of the VDR gene have been the most frequently studied. Because these polymorphisms are probably nonfunctional, linkage disequilibrium with one or more truly functional polymorphisms elsewhere in the VDR gene is assumed to explain the associations observed. Research is therefore focussed on documenting additional polymorphisms across the VDR gene to verify this hypothesis and on trying to understand the functional consequences of the variations. Substantial progress has been made that will deepen our understanding of variability in the vitamin D endocrine system and might find applications in risk assessment of disease and in predicting response-to-treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Contrasting disease patterns in seropositive and seronegative neuromyelitis optica: A multicentre study of 175 patients

              Background The diagnostic and pathophysiological relevance of antibodies to aquaporin-4 (AQP4-Ab) in patients with neuromyelitis optica spectrum disorders (NMOSD) has been intensively studied. However, little is known so far about the clinical impact of AQP4-Ab seropositivity. Objective To analyse systematically the clinical and paraclinical features associated with NMO spectrum disorders in Caucasians in a stratified fashion according to the patients' AQP4-Ab serostatus. Methods Retrospective study of 175 Caucasian patients (AQP4-Ab positive in 78.3%). Results Seropositive patients were found to be predominantly female (p 1 myelitis attacks in the first year were identified as possible predictors of a worse outcome. Conclusion This study provides an overview of the clinical and paraclinical features of NMOSD in Caucasians and demonstrates a number of distinct disease characteristics in seropositive and seronegative patients.
                Bookmark

                Author and article information

                Contributors
                +49 (0)30 450 539 705 , friedemann.paul@charite.de
                Journal
                EPMA J
                EPMA J
                The EPMA Journal
                Springer International Publishing (Cham )
                1878-5077
                1878-5085
                15 November 2017
                15 November 2017
                December 2017
                : 8
                : 4
                : 313-325
                Affiliations
                [1 ]Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, Berlin, Germany
                [2 ]Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence and Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
                [3 ]Charité – Universitätsmedizin, corporate member of Freie Universität Berlin, Humboldt- Universitäts zu Berlin, and Berlin Institute of Health, Neurocure Cluster of Excellence, and Multiple Sclerosis Center Hennigsdorf, Oberhavel Clinics, Berlin, Germany
                Author information
                http://orcid.org/0000-0002-9751-3464
                Article
                120
                10.1007/s13167-017-0120-8
                5700019
                29209434
                6ab2c5c0-8aab-4e0d-94a7-e58b5689e7f5
                © The Author(s) 2017

                Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

                History
                : 17 August 2017
                : 18 October 2017
                Funding
                Funded by: DGF Excellence grant to FP
                Award ID: DFG Exc. 257
                Award Recipient :
                Categories
                Review
                Custom metadata
                © European Association for Predictive, Preventive and Personalised Medicine (EPMA) 2017

                Molecular medicine
                vitamin d,multiple sclerosis,neuromyelitis optica spectrum disorders,parkinson’s disease,alzheimer’s disease,predictive preventive personalized medicine

                Comments

                Comment on this article