18
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Threat webs: Reframing the co‐occurrence and interactions of threats to biodiversity

      1 , 2 , 3 , 1 , 1 , 4
      Journal of Applied Ecology
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Interactive effects of habitat modification and species invasion on native species decline.

          Different components of global environmental change are often studied and managed independently, but mounting evidence points towards complex non-additive interaction effects between drivers of native species decline. Using the example of interactions between land-use change and biotic exchange, we develop an interpretive framework that will enable global change researchers to identify and discriminate between major interaction pathways. We formalise a distinction between numerically mediated versus functionally moderated causal pathways. Despite superficial similarity of their effects, numerical and functional pathways stem from fundamentally different mechanisms of action and have fundamentally different consequences for conservation management. Our framework is a first step toward building a better quantitative understanding of how interactions between drivers might mitigate or exacerbate the net effects of global environmental change on biotic communities in the future.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Interactions among ecosystem stressors and their importance in conservation.

            Interactions between multiple ecosystem stressors are expected to jeopardize biological processes, functions and biodiversity. The scientific community has declared stressor interactions-notably synergies-a key issue for conservation and management. Here, we review ecological literature over the past four decades to evaluate trends in the reporting of ecological interactions (synergies, antagonisms and additive effects) and highlight the implications and importance to conservation. Despite increasing popularity, and ever-finer terminologies, we find that synergies are (still) not the most prevalent type of interaction, and that conservation practitioners need to appreciate and manage for all interaction outcomes, including antagonistic and additive effects. However, it will not be possible to identify the effect of every interaction on every organism's physiology and every ecosystem function because the number of stressors, and their potential interactions, are growing rapidly. Predicting the type of interactions may be possible in the near-future, using meta-analyses, conservation-oriented experiments and adaptive monitoring. Pending a general framework for predicting interactions, conservation management should enact interventions that are robust to uncertainty in interaction type and that continue to bolster biological resilience in a stressful world.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A standard lexicon for biodiversity conservation: unified classifications of threats and actions.

              An essential foundation of any science is a standard lexicon. Any given conservation project can be described in terms of the biodiversity targets, direct threats, contributing factors at the project site, and the conservation actions that the project team is employing to change the situation. These common elements can be linked in a causal chain, which represents a theory of change about how the conservation actions are intended to bring about desired project outcomes. If project teams want to describe and share their work and learn from one another, they need a standard and precise lexicon to specifically describe each node along this chain. To date, there have been several independent efforts to develop standard classifications for the direct threats that affect biodiversity and the conservation actions required to counteract these threats. Recognizing that it is far more effective to have only one accepted global scheme, we merged these separate efforts into unified classifications of threats and actions, which we present here. Each classification is a hierarchical listing of terms and associated definitions. The classifications are comprehensive and exclusive at the upper levels of the hierarchy, expandable at the lower levels, and simple, consistent, and scalable at all levels. We tested these classifications by applying them post hoc to 1191 threatened bird species and 737 conservation projects. Almost all threats and actions could be assigned to the new classification systems, save for some cases lacking detailed information. Furthermore, the new classification systems provided an improved way of analyzing and comparing information across projects when compared with earlier systems. We believe that widespread adoption of these classifications will help practitioners more systematically identify threats and appropriate actions, managers to more efficiently set priorities and allocate resources, and most important, facilitate cross-project learning and the development of a systematic science of conservation.
                Bookmark

                Author and article information

                Journal
                Journal of Applied Ecology
                J Appl Ecol
                Wiley
                0021-8901
                1365-2664
                June 14 2019
                June 14 2019
                Affiliations
                [1 ]Centre for Integrative Ecology, School of Life and Environmental Sciences (Burwood Campus) Deakin University Geelong Vic. Australia
                [2 ]Biodiversity Division Department of Environment, Land, Water & Planning Melbourne Vic. Australia
                [3 ]School of Environmental Science, Institute for Land, Water and Society Charles Sturt University Albury NSW Australia
                [4 ]School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
                Article
                10.1111/1365-2664.13427
                6ab4a7e6-cfaa-4fc1-b2bf-2a6b78e79a9c
                © 2019

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article