Blog
About

  • Record: found
  • Abstract: found
  • Article: not found

Locomotor effects of ethanol and acetaldehyde after peripheral and intraventricular injections in Swiss and C57BL/6J mice.

Behavioural Brain Research

administration & dosage, pharmacology, Animals, Central Nervous System Depressants, Dose-Response Relationship, Drug, Ethanol, drug effects, Injections, Intraperitoneal, Injections, Intraventricular, Male, Mice, Mice, Inbred C57BL, Motor Activity, Acetaldehyde

Read this article at

ScienceOpenPublisherPubMed
Bookmark
      There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

      Abstract

      Several studies have suggested that acetaldehyde, the first product of ethanol metabolism, is involved in the locomotor stimulant effects of ethanol in mice, although it has never been formally tested whether acetaldehyde injected directly into the brain of mice has stimulant properties. Recently, it was also shown in rats that both ethanol and acetaldehyde can induce opposite locomotor effects according to the route of administration. Whereas peripheral administrations of ethanol and acetaldehyde induced locomotor depressant effects, their infusions directly into the brain produced locomotor stimulation. The aim of the present study was to characterize in mice the locomotor effects of ethanol and acetaldehyde injected either peripherally by the intraperitoneal route or centrally into the brain ventricles. Additionally, the effects of ethanol and acetaldehyde were compared in two strains of mice known for their differential sensitivity to the locomotor effects of ethanol, namely Swiss and C57BL/6J mice. Ethanol induced a biphasic effect on locomotor activity in Swiss mice, with stimulant effects at low to moderate doses and depressant effects at higher doses. Such a profile of effects was observed whatever the route of administration, peripheral or central. In C57BL/6J mice, ethanol only induced monophasic depressant effects. In this mouse strain, no evidence of the stimulant effects of ethanol was found after either an i.p. or an i.c.v. administration of ethanol. In contrast to ethanol, acetaldehyde yielded only depressant effects in both strains of mice after both peripheral and central administrations. These results indicate that the route of administration does not alter the locomotor effects of ethanol and acetaldehyde in mice. Additionally, the present study shows that the stimulant properties of acetaldehyde, even after direct infusion into the brain, are not as obvious as previously speculated.

      Related collections

      Author and article information

      Journal
      16764949
      10.1016/j.bbr.2006.05.010

      Comments

      Comment on this article