3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Potential Using of Fat-derived Stromal Cells in the Treatment of Active Disease, and also, in Both Pre- and Post-Periods in COVID-19

      letter
      *
      Aging and Disease
      JKL International LLC
      COVID 19, stromal cells, stem cell, ADSC, adipose tissue

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The whole world is fighting with the COVID-19 pandemic, which traps people home, causing high business and economic losses, and above all, leads to very serious deaths. The lack of a valid, accepted treatment protocol and vaccine that leads to continued treatment searches. Leng et al published their article in the Aging and Disease journal, which demonstrates that mesenchymal stem cells (MSCs) can be used for COVID-19 treatment. Adipose tissue is one of the most important MSCs sources in the body, and adipose derived stromal cells (ADSCs) from adipose tissue are also one of the most valuable components of stromal vascular fraction (SVF). Finally, Gentile and Sterodimas, have also published their article for the potential use of SVF in COVID-19 treatment in Aging and Disease journal. Their publication has been a guide in many ways. Adipose tissue-derived stromal cells have three main features: Immunomodulatory, anti-inflammatory and regenerative. Immunomodulator effects are used as a preventive in patients prone to disease; its anti-inflammatory effects may allow them to be used as a therapeutic during active disease period and finally regenerative effects to repair post-disease sequale. Those cells can be obtained not only enzymatically, but also mechanically with very benefits. They can be delivered not only systemically through the IV route but also to the target organ with a carrier. While suggesting any adipose tissue-derived treatment method possibility, the relation of adipose tissue COVID-19 should not be ignored. Because, COVID-19 shows its effect through ACE-2 and adipose tissue is very rich and important tissue in terms of ACE-2.

          Related collections

          Most cited references28

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Transplantation of ACE2 - Mesenchymal Stem Cells Improves the Outcome of Patients with COVID-19 Pneumonia

          A coronavirus (HCoV-19) has caused the novel coronavirus disease (COVID-19) outbreak in Wuhan, China. Preventing and reversing the cytokine storm may be the key to save the patients with severe COVID-19 pneumonia. Mesenchymal stem cells (MSCs) have been shown to possess a comprehensive powerful immunomodulatory function. This study aims to investigate whether MSC transplantation improves the outcome of 7 enrolled patients with COVID-19 pneumonia in Beijing YouAn Hospital, China, from Jan 23, 2020 to Feb 16, 2020. The clinical outcomes, as well as changes of inflammatory and immune function levels and adverse effects of 7 enrolled patients were assessed for 14 days after MSC injection. MSCs could cure or significantly improve the functional outcomes of seven patients without observed adverse effects. The pulmonary function and symptoms of these seven patients were significantly improved in 2 days after MSC transplantation. Among them, two common and one severe patient were recovered and discharged in 10 days after treatment. After treatment, the peripheral lymphocytes were increased, the C-reactive protein decreased, and the overactivated cytokine-secreting immune cells CXCR3+CD4+ T cells, CXCR3+CD8+ T cells, and CXCR3+ NK cells disappeared in 3-6 days. In addition, a group of CD14+CD11c+CD11bmid regulatory DC cell population dramatically increased. Meanwhile, the level of TNF-α was significantly decreased, while IL-10 increased in MSC treatment group compared to the placebo control group. Furthermore, the gene expression profile showed MSCs were ACE2- and TMPRSS2- which indicated MSCs are free from COVID-19 infection. Thus, the intravenous transplantation of MSCs was safe and effective for treatment in patients with COVID-19 pneumonia, especially for the patients in critically severe condition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Nafamostat Mesylate Blocks Activation of SARS-CoV-2: New Treatment Option for COVID-19

            LETTER The currently unfolding coronavirus pandemic threatens health systems and economies worldwide. The spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the associated disease coronavirus disease 2019 (COVID-19) has initially been limited to China. However, the virus has now been detected in more than 100 countries outside China, and major outbreaks are ongoing in the United States, Italy, and Spain. At present, our antiviral arsenal offers little protection against SARS-CoV-2, although recent progress has been reported (1), and novel antivirals are urgently needed to mitigate the COVID-19 health crisis. The SARS-CoV-2 spike protein (S) is inserted into the viral envelope and mediates viral entry into cells. For this, the S protein depends on the cellular enzyme transmembrane protease serine 2 (TMPRSS2), which cleaves and thereby activates the S protein (2). SARS-CoV (3 – 5) and other coronaviruses (6, 7) also use TMPRSS2 for S protein activation, and the protease is expressed in SARS-CoV target cells throughout the human respiratory tract (8). Moreover, TMPRSS2 is required for spread of SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV) in rodent models (9, 10) but is dispensable for development and homeostasis in mice (11). Thus, TMPRSS2 constitutes an attractive drug target. Recent work shows that camostat mesylate (NI-03), a serine protease inhibitor active against TMPRSS2 and employed for treatment of pancreatitis in Japan, inhibits SARS-CoV-2 infection of human lung cells (2). The suitability of camostat mesylate for treatment of COVID-19 is currently being evaluated in a clinical trial (12), but it is unclear whether compound concentrations can be attained in the lung that are sufficient to suppress viral spread. In the absence of this information, testing of other serine protease inhibitors for blockade of SARS-CoV-2 entry is an important task. For this, we tested gabexate mesylate (FOY) and nafamostat mesylate (Futhan) (13) along with camostat mesylate for inhibition of SARS-CoV-2 infection of lung cells. All compounds are approved for human use in Japan, and nafamostat mesylate inhibits TMPRSS2-dependent host cell entry of MERS-CoV (14). A comparison of the antiviral activities of the three compounds revealed that none interfered with cell viability or with host cell entry mediated by the glycoproteins of vesicular stomatitis virus or Machupo virus (Fig. 1A), which served as negative controls. Gabexate mesylate slightly inhibited SARS-CoV-2 S-driven host cell entry while camostat mesylate robustly suppressed entry (Fig. 1A). Notably, nafamostat mesylate, which is FDA approved for indications unrelated to coronavirus infection, inhibited SARS-CoV-2 S-mediated entry into host cells with roughly 15-fold-higher efficiency than camostat mesylate, with a 50% effective concentration [EC50] in the low-nanomolar range (Fig. 1A). Moreover, nafamostat mesylate blocked SARS-CoV-2 infection of human lung cells with markedly higher efficiency than camostat mesylate while both compounds were not active against vesicular stomatitis virus infection, as expected (Fig. 1B to D). In light of the global impact of COVID-19 on human health, the proven safety of nafamostat mesylate, and its increased antiviral activity compared to camostat mesylate, we argue that this compound should be evaluated in clinical trials as a COVID-19 treatment. FIG 1 Nafamostat mesylate inhibits SARS-CoV-2 infection of lung cells in the nanomolar range. The lung-derived human cell line Calu-3 was incubated with the indicated concentrations of the indicated serine protease inhibitors, and (A) either cell viability was measured or the cells were inoculated with vesicular stomatitis virus reporter particles pseudotyped with the indicated viral glycoproteins. The efficiency of viral entry was determined at 16 h postinoculation by measuring luciferase activity in cell lysates. The 50% effective dose values are indicated below the graphs. In parallel, cells exposed to serine protease inhibitors were infected with replication-competent vesicular stomatitis virus encoding green fluorescent protein (B) or infected with SARS-CoV-2 (C), and infection efficiency was quantified by focus formation assay and by measuring genome copies via quantitative RT-PCR, respectively. A scheme of how camostat and nafamostat mesylate block activation of SARS-2-S is shown in panel D. The average from three independent experiments is shown in panels A and C while the average from four independent experiments is presented in panel B. For panels A to C, statistical significance was tested by two-way analysis of variance with Dunnett’s posttest. In addition, statistical significance of differences between SARS-CoV-2 genome equivalents at identical concentrations of camostat or nafamostat mesylate was tested by one-way analysis of variance with Sidak’s posttest. Abbreviations: VSV-G, vesicular stomatitis virus glycoprotein, MACV-GPC, Machupo virus glycoprotein complex; MERS-S, Middle East respiratory syndrome coronavirus spike glycoprotein; SARS-S, severe acute respiratory syndrome coronavirus spike glycoprotein; SARS-2-S, severe acute respiratory syndrome coronavirus 2 spike glycoprotein.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical study of mesenchymal stem cell treating acute respiratory distress syndrome induced by epidemic Influenza A (H7N9) infection, a hint for COVID-19 treatment

              Highlights • Allogeneic menstrual blood-derived MSC transplantation significantly lower the mortality with H7N9 induced ARDS. • The first prospective and systematic report of H7N9 induced pneumonia to assess the health condition during the convalescent period. • MSC transplantation will not exert harmful effects in human body in the long-term follow up. • MSC-based therapy is an alternative method for treating COVID-19 induced severe ARDS.
                Bookmark

                Author and article information

                Contributors
                Journal
                Aging Dis
                Aging Dis
                Aging and Disease
                JKL International LLC
                2152-5250
                July 2020
                23 July 2020
                : 11
                : 4
                : 730-736
                Affiliations
                Mest Health Services, Aesthetic and Plastic Surgery, Izmir, Turkey
                Author notes
                [* ]Correspondence should be addressed to: Dr. Eray COPCU, Mest Health Services, Cumhuriyet Bulv. N:161 /A-1-2 Izmir, Turkey. E-mail: ecopcu@ 123456gmail.com
                Article
                ad-11-4-730
                10.14336/AD.2020.0621
                7390516
                32765938
                6af407a2-3b5d-446c-85ab-7e1fd9d7601c
                Copyright: © 2020 Copcu et al.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

                History
                : 14 May 2020
                : 19 June 2020
                : 21 June 2020
                Categories
                Letter to the Editor

                covid 19,stromal cells,stem cell,adsc,adipose tissue
                covid 19, stromal cells, stem cell, adsc, adipose tissue

                Comments

                Comment on this article