34
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-wide expression analysis offers new insights into the origin and evolution of Physcomitrella patens stress response

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Changes in the environment, such as those caused by climate change, can exert stress on plant growth, diversity and ultimately global food security. Thus, focused efforts to fully understand plant response to stress are urgently needed in order to develop strategies to cope with the effects of climate change. Because Physcomitrella patens holds a key evolutionary position bridging the gap between green algae and higher plants, and because it exhibits a well-developed stress tolerance, it is an excellent model for such exploration. Here, we have used Physcomitrella patens to study genome-wide responses to abiotic stress through transcriptomic analysis by a high-throughput sequencing platform. We report a comprehensive analysis of transcriptome dynamics, defining profiles of elicited gene regulation responses to abiotic stress-associated hormone Abscisic Acid (ABA), cold, drought, and salt treatments. We identified more than 20,000 genes expressed under each aforementioned stress treatments, of which 9,668 display differential expression in response to stress. The comparison of Physcomitrella patens stress regulated genes with unicellular algae, vascular and flowering plants revealed genomic delineation concomitant with the evolutionary movement to land, including a general gene family complexity and loss of genes associated with different functional groups.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: not found

          Gene Ontology: tool for the unification of biology

          Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance.

            Abiotic stresses, such as drought, salinity, extreme temperatures, chemical toxicity and oxidative stress are serious threats to agriculture and the natural status of the environment. Increased salinization of arable land is expected to have devastating global effects, resulting in 30% land loss within the next 25 years, and up to 50% by the year 2050. Therefore, breeding for drought and salinity stress tolerance in crop plants (for food supply) and in forest trees (a central component of the global ecosystem) should be given high research priority in plant biotechnology programs. Molecular control mechanisms for abiotic stress tolerance are based on the activation and regulation of specific stress-related genes. These genes are involved in the whole sequence of stress responses, such as signaling, transcriptional control, protection of membranes and proteins, and free-radical and toxic-compound scavenging. Recently, research into the molecular mechanisms of stress responses has started to bear fruit and, in parallel, genetic modification of stress tolerance has also shown promising results that may ultimately apply to agriculturally and ecologically important plants. The present review summarizes the recent advances in elucidating stress-response mechanisms and their biotechnological applications. Emphasis is placed on transgenic plants that have been engineered based on different stress-response mechanisms. The review examines the following aspects: regulatory controls, metabolite engineering, ion transport, antioxidants and detoxification, late embryogenesis abundant (LEA) and heat-shock proteins.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The Physcomitrella genome reveals evolutionary insights into the conquest of land by plants.

              We report the draft genome sequence of the model moss Physcomitrella patens and compare its features with those of flowering plants, from which it is separated by more than 400 million years, and unicellular aquatic algae. This comparison reveals genomic changes concomitant with the evolutionary movement to land, including a general increase in gene family complexity; loss of genes associated with aquatic environments (e.g., flagellar arms); acquisition of genes for tolerating terrestrial stresses (e.g., variation in temperature and water availability); and the development of the auxin and abscisic acid signaling pathways for coordinating multicellular growth and dehydration response. The Physcomitrella genome provides a resource for phylogenetic inferences about gene function and for experimental analysis of plant processes through this plant's unique facility for reverse genetics.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                30 November 2015
                2015
                : 5
                : 17434
                Affiliations
                [1 ]Laboratory of Algal, Systems, and Synthetic Biology, Division of Science and Math, New York University Abu Dhabi , Abu Dhabi, UAE
                [2 ]Center for Genomics and Systems Biology, New York University Abu Dhabi , Abu Dhabi, UAE
                [3 ]Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology , Thuwal, KSA
                Author notes
                [*]

                These authors contributed equally to this work.

                Article
                srep17434
                10.1038/srep17434
                4663497
                26615914
                6af4416d-629e-4542-b17b-5f3b3679dfc9
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 29 June 2015
                : 29 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article