This study investigates the fracture and retention strength of all-ceramic crowns with modified composite resin and ceramic cores compared to conventional casted post and core systems.
A prepared human central tooth was initially scanned to design and 3D print the post and core. Subsequently, 40 bovine teeth were adjusted to accommodate the fabricated post and cores. They were then divided into four groups of 10 each: group 1 comprised cast cores without cover (control group), group 2 involved cast cores reduced and replaced with IPS Empress material (IPS group), group 3 consisted of cast cores covered with opaque composite (composite group), and group 4 included cast cores covered with opaque ceramic (ceramic group). Zirconia crowns were cemented onto all samples. After an aging process, pull-off and fracture strength tests were conducted. Fracture strength was determined by applying a compressive force at an angle of 135° to the tooth's longitudinal axis until the fracture occurred. For retention strength assessment, a universal testing machine with a 10 mm/min crosshead speed was employed. The resulting data underwent statistical analysis utilizing two-way analysis of variance (ANOVA) and Mann–Whitney U tests.