3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Global gaps in trait data for terrestrial vertebrates

      1 , 1 , 1
      Global Ecology and Biogeography
      Wiley

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: not found
          • Article: not found

          phytools: an R package for phylogenetic comparative biology (and other things)

            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            BEAST 2: A Software Platform for Bayesian Evolutionary Analysis

            We present a new open source, extensible and flexible software platform for Bayesian evolutionary analysis called BEAST 2. This software platform is a re-design of the popular BEAST 1 platform to correct structural deficiencies that became evident as the BEAST 1 software evolved. Key among those deficiencies was the lack of post-deployment extensibility. BEAST 2 now has a fully developed package management system that allows third party developers to write additional functionality that can be directly installed to the BEAST 2 analysis platform via a package manager without requiring a new software release of the platform. This package architecture is showcased with a number of recently published new models encompassing birth-death-sampling tree priors, phylodynamics and model averaging for substitution models and site partitioning. A second major improvement is the ability to read/write the entire state of the MCMC chain to/from disk allowing it to be easily shared between multiple instances of the BEAST software. This facilitates checkpointing and better support for multi-processor and high-end computing extensions. Finally, the functionality in new packages can be easily added to the user interface (BEAUti 2) by a simple XML template-based mechanism because BEAST 2 has been re-designed to provide greater integration between the analysis engine and the user interface so that, for example BEAST and BEAUti use exactly the same XML file format.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              MissForest--non-parametric missing value imputation for mixed-type data.

              Modern data acquisition based on high-throughput technology is often facing the problem of missing data. Algorithms commonly used in the analysis of such large-scale data often depend on a complete set. Missing value imputation offers a solution to this problem. However, the majority of available imputation methods are restricted to one type of variable only: continuous or categorical. For mixed-type data, the different types are usually handled separately. Therefore, these methods ignore possible relations between variable types. We propose a non-parametric method which can cope with different types of variables simultaneously. We compare several state of the art methods for the imputation of missing values. We propose and evaluate an iterative imputation method (missForest) based on a random forest. By averaging over many unpruned classification or regression trees, random forest intrinsically constitutes a multiple imputation scheme. Using the built-in out-of-bag error estimates of random forest, we are able to estimate the imputation error without the need of a test set. Evaluation is performed on multiple datasets coming from a diverse selection of biological fields with artificially introduced missing values ranging from 10% to 30%. We show that missForest can successfully handle missing values, particularly in datasets including different types of variables. In our comparative study, missForest outperforms other methods of imputation especially in data settings where complex interactions and non-linear relations are suspected. The out-of-bag imputation error estimates of missForest prove to be adequate in all settings. Additionally, missForest exhibits attractive computational efficiency and can cope with high-dimensional data. The package missForest is freely available from http://stat.ethz.ch/CRAN/. stekhoven@stat.math.ethz.ch; buhlmann@stat.math.ethz.ch
                Bookmark

                Author and article information

                Contributors
                Journal
                Global Ecology and Biogeography
                Global Ecol. Biogeogr.
                Wiley
                1466-822X
                1466-8238
                December 2020
                October 11 2020
                December 2020
                : 29
                : 12
                : 2143-2158
                Affiliations
                [1 ]Department of Genetics, Evolution and Environment Centre for Biodiversity and Environment Research University College London London UK
                Article
                10.1111/geb.13184
                6b0202fa-7332-4d12-a3a8-4107a828ff3f
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article