2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Benzoxaboroles—Novel Autotaxin Inhibitors

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Autotaxin (ATX) is an extracellular enzyme that hydrolyses lysophosphatidylcholine (LPC) to lysophosphatidic acid (LPA), which has a role in the mediation of inflammation, fibrosis and cancer. ATX is a drug target that has been the focus of many research groups during the last ten years. To date, only one molecule, Ziritaxestat (GLPG1690) has entered the clinic; it is currently in Phase 3 clinical trials for idiopathic pulmonary fibrosis. Other small molecules, with different binding modes, have been investigated as ATX inhibitors for cancer including compounds possessing a boronic acid motif such as HA155. In this work, we targeted new, improved inhibitors of ATX that mimic the important interactions of boronic acid using a benzoxaborole motif as the acidic warhead. Furthermore, we aimed to improve the plasma stability of the new compounds by using a more stable core spacer than that embedded in HA155. Compounds were synthesized, evaluated for their ATX inhibitory activity and ADME properties in vitro, culminating in a new benzoxaborole compound, 37, which retains the ATX inhibition activity of HA155 but has improved ADME properties (plasma protein binding, good kinetic solubility and rat/human plasma stability).

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: not found

          Integrated Modeling Program, Applied Chemical Theory (IMPACT).

          We provide an overview of the IMPACT molecular mechanics program with an emphasis on recent developments and a description of its current functionality. With respect to core molecular mechanics technologies we include a status report for the fixed charge and polarizable force fields that can be used with the program and illustrate how the force fields, when used together with new atom typing and parameter assignment modules, have greatly expanded the coverage of organic compounds and medicinally relevant ligands. As we discuss in this review, explicit solvent simulations have been used to guide our design of implicit solvent models based on the generalized Born framework and a novel nonpolar estimator that have recently been incorporated into the program. With IMPACT it is possible to use several different advanced conformational sampling algorithms based on combining features of molecular dynamics and Monte Carlo simulations. The program includes two specialized molecular mechanics modules: Glide, a high-throughput docking program, and QSite, a mixed quantum mechanics/molecular mechanics module. These modules employ the IMPACT infrastructure as a starting point for the construction of the protein model and assignment of molecular mechanics parameters, but have then been developed to meet specialized objectives with respect to sampling and the energy function. (c) 2005 Wiley Periodicals, Inc.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Docking covalent inhibitors: a parameter free approach to pose prediction and scoring.

            Although many popular docking programs include a facility to account for covalent ligands, large-scale systematic docking validation studies of covalent inhibitors have been sparse. In this paper, we present the development and validation of a novel approach for docking and scoring covalent inhibitors, which consists of conventional noncovalent docking, heuristic formation of the covalent attachment point, and structural refinement of the protein-ligand complex. This approach combines the strengths of the docking program Glide and the protein structure modeling program Prime and does not require any parameter fitting for the study of additional covalent reaction types. We first test this method by predicting the native binding geometry of 38 covalently bound complexes. The average RMSD of the predicted poses is 1.52 Å, and 76% of test set inhibitors have an RMSD of less than 2.0 Å. In addition, the apparent affinity score constructed herein is tested on a virtual screening study and the characterization of the SAR properties of two different series of congeneric compounds with satisfactory success.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Getting physical in drug discovery II: the impact of chromatographic hydrophobicity measurements and aromaticity.

              Here, we review the performance of chromatographic hydrophobicity measurements in a data set of 100,000 GlaxoSmithKline compounds, demonstrating the advantages of the method over octanol-water partitioning and highlighting new insights for drug discovery. The value of chromatographic measurements, versus other hydrophobicity estimates, was supported by improved relationships with solubility, permeation, cytochrome P450s, intrinsic clearance, hERG binding and promiscuity. We also observed marked differentiation of the relative influence of intrinsic and effective hydrophobicity. The summing of hydrophobicity values plus aromatic ring count [logD(pH7.4) (or logP)+#Ar], indicated a wide relevance for simplistic 'property forecast indices' in developability assays, clearly enhanced by chromatographic values; therefore establishing new foundations for enriching property-based drug design. Copyright © 2011 Elsevier Ltd. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules
                MDPI
                1420-3049
                20 September 2019
                October 2019
                : 24
                : 19
                : 3419
                Affiliations
                Author notes
                [* ]Correspondence: milan.mesic@ 123456glpg.com ; Tel.: +385-1-8886-372
                Article
                molecules-24-03419
                10.3390/molecules24193419
                6804080
                31547058
                6b168de0-4a0b-4d43-8242-a7874171423e
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 18 August 2019
                : 17 September 2019
                Categories
                Article

                autotaxin (atx),lysophosphaditic acid,benzoxaboroles,cancer

                Comments

                Comment on this article