14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Human Innate Immunity to Toxoplasma gondii Is Mediated by Host Caspase-1 and ASC and Parasite GRA15

      research-article
      , , ,
      mBio
      American Society of Microbiology

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          ABSTRACT  

          Interleukin-1β (IL-1β) functions as a key regulator of inflammation and innate immunity. The protozoan parasite Toxoplasma gondii actively infects human blood monocytes and induces the production of IL-1β; however, the host and parasite factors that mediate IL-1β production during T. gondii infection are poorly understood. We report that T. gondii induces IL-1β transcript, processing/cleavage, and release from infected primary human monocytes and THP-1 cells. Treating monocytes with the caspase-1 inhibitor Ac-YVAD-CMK reduced IL-1β release, suggesting a role for the inflammasome in T. gondii-induced IL-1β production. This was confirmed by performing short hairpin RNA (shRNA) knockdown of caspase-1 and of the inflammasome adaptor protein ASC. IL-1β induction required active parasite invasion of monocytes, since heat-killed or mycalolide B-treated parasites did not induce IL-1β. Among the type I, II, and III strains of T. gondii, the type II strain induced substantially more IL-1β mRNA and protein release than did the type I and III strains. Since IL-1β transcript is known to be induced downstream of NF-κB signaling, we investigated a role for the GRA15 protein, which induces sustained NF-κB signaling in a parasite strain-specific manner. By infecting human monocytes with a GRA15-knockout type II strain and a type I strain stably expressing type II GRA15, we determined that GRA15 is responsible for IL-1β induction during T. gondii infection of human monocytes. This research defines a pathway driving human innate immunity by describing a role for the classical inflammasome components caspase-1 and ASC and the parasite GRA15 protein in T. gondii-induced IL-1β production.

          IMPORTANCE

          Monocytes are immune cells that protect against infection by increasing inflammation and antimicrobial activities in the body. Upon infection with the parasitic pathogen Toxoplasma gondii, human monocytes release interleukin-1β (IL-1β), a “master regulator” of inflammation, which amplifies immune responses. Although inflammatory responses are critical for host defense against infection, excessive inflammation can result in tissue damage and pathology. This delicate balance underscores the importance of understanding the mechanisms that regulate IL-1β during infection. We have investigated the molecular pathway by which T. gondii induces the synthesis and release of IL-1β in human monocytes. We found that specific proteins in the parasite and the host cell coordinate to induce IL-1β production. This research is significant because it contributes to a greater understanding of human innate immunity to infection and IL-1β regulation, thereby enhancing our potential to modulate inflammation in the body.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes.

          Interleukin-1 beta (IL-1 beta)-converting enzyme cleaves the IL-1 beta precursor to mature IL-1 beta, an important mediator of inflammation. The identification of the enzyme as a unique cysteine protease and the design of potent peptide aldehyde inhibitors are described. Purification and cloning of the complementary DNA indicates that IL-1 beta-converting enzyme is composed of two nonidentical subunits that are derived from a single proenzyme, possibly by autoproteolysis. Selective inhibition of the enzyme in human blood monocytes blocks production of mature IL-1 beta, indicating that it is a potential therapeutic target.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A clinical perspective of IL-1β as the gatekeeper of inflammation.

            An expanding spectrum of acute and chronic non-infectious inflammatory diseases is uniquely responsive to IL-1β neutralization. IL-1β-mediated diseases are often called "auto-inflammatory" and the dominant finding is the release of the active form of IL-1β driven by endogenous molecules acting on the monocyte/macrophage. IL-1β activity is tightly controlled and requires the conversion of the primary transcript, the inactive IL-1β precursor, to the active cytokine by limited proteolysis. Limited proteolysis can take place extracellularly by serine proteases, released in particular by infiltrating neutrophils or intracellularly by the cysteine protease caspase-1. Therefore, blocking IL-1β resolves inflammation regardless of how the cytokine is released from the cell or how the precursor is cleaved. Endogenous stimulants such as oxidized fatty acids and lipoproteins, high glucose concentrations, uric acid crystals, activated complement, contents of necrotic cells, and cytokines, particularly IL-1 itself, induce the synthesis of the inactive IL-1β precursor, which awaits processing to the active form. Although bursts of IL-1β precipitate acute attacks of systemic or local inflammation, IL-1β also contributes to several chronic diseases. For example, ischemic injury, such as myocardial infarction or stroke, causes acute and extensive damage, and slowly progressive inflammatory processes take place in atherosclerosis, type 2 diabetes, osteoarthritis and smoldering myeloma. Evidence for the involvement of IL-1β and the clinical results of reducing IL-1β activity in this broad spectrum of inflammatory diseases are the focus of this review. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Toxoplasmic encephalitis in AIDS.

              Involvement of the central nervous system (CNS) is common in patients with advanced disease due to human immunodeficiency virus (HIV). Symptoms range from lethargy and apathy to coma, incoordination and ataxia to hemiparesis, loss of memory to severe dementia, and focal to major motor seizures. Involvement may be closely associated with HIV infection per se, as in the AIDS dementia complex, but is frequently caused by opportunistic pathogens such as Toxoplasma gondii and Cryptococcus neoformans or malignancies such as primary lymphoma of the CNS. The clinical presentations of attendant and direct CNS involvement are remarkably non-specific and overlapping, yet a correct diagnosis is critical to successful intervention. Toxoplasmic encephalitis is one of the most common and most treatable causes of AIDS-associated pathology of the CNS. A great deal has been learned in the last 10 years about its unique presentation in the HIV-infected patient with advanced disease. Drs. Benjamin J. Luft of the State University of New York at Stony Brook and Jack S. Remington of the Stanford University School of Medicine and Palo Alto Medical Foundation's Research Institute have studied T. gondii for many years and are two of the leading experts in the field. This commentary comprises an update of their initial review (J Infect Dis 1988;157:1-6) and a presentation of the current approaches to diagnosing and managing toxoplasmic encephalitis in HIV-infected patients.
                Bookmark

                Author and article information

                Journal
                mBio
                MBio
                mbio
                mbio
                mBio
                mBio
                American Society of Microbiology (1752 N St., N.W., Washington, DC )
                2150-7511
                9 July 2013
                Jul-Aug 2013
                : 4
                : 4
                : e00255-13
                Affiliations
                [1]Department of Molecular Biology and Biochemistry and the Institute for Immunology, University of California, Irvine, California, USA
                Author notes
                Address correspondence to Melissa B. Lodoen, mlodoen@ 123456uci.edu .

                Editor Louis Weiss, Albert Einstein College of Medicine

                Article
                mBio00255-13
                10.1128/mBio.00255-13
                3705447
                23839215
                6b169490-b2aa-4ff5-9b8f-9af76cbaebc8
                Copyright © 2013 Gov et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution-Noncommercial-ShareAlike 3.0 Unported license, which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 April 2013
                : 11 June 2013
                Page count
                Pages: 11
                Categories
                Research Article
                Custom metadata
                July/August 2013

                Life sciences
                Life sciences

                Comments

                Comment on this article